High performance computing activities in hadron spectroscopy at BESIII

LIU Beijiang For BESIII collaboration ACAT 2013, IHEP, Beijing

Storage ring

NIM A614, 345 (2010)

BES III (Beijing Spectrometer)

The BESIII Detector

Beam energy 1.0-2.3 GeV Energy spread: 5.16×10^{-4}

Design luminosity 1 × 10^{33} /cm²/s @ ψ (3770)

BEPC II

Linac

(Beijing Electron-positron collider)
2004: started BEPCII upgrade, BESIII construction
2008: test run
2009-now: BESIII physics run

Physics of T-charm region

Charmonium physics:

- Spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- glueball & hybrid
- two-photon physics
- e.m. form factors of nucleon

Open Charm physics:

- (semi)leptonic + hadronic decays 3000
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CP violation
- rare/forbidden decays

Tau physics:

- tau decays near threshold
- tau mass scan
- ...and many more.

	Previous data	BESIII present & future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ψ(4160)	<mark>2011: 0.4/fb @ ψ(4040)</mark> 2013: 1/fb@4260, 4360	5-10 /fb
R scan & Tau	BESII	2012: 12/pb@2.23,2.4,2.8,3.4 25/pb τ scan 2013, 2014: @4260, R scan,	

World's largest samples ³

- Hadron spectroscopy is a key tool to investigate QCD
- testing QCD in the confinement regime
- providing insights into the fundamental degrees of freedom

BES provides some ideal hunting grounds Power of high statistics

Partial wave analysis

Tasks:

- \Box Map out the resonances
- Systematic determination of resonance properties: spin-parity, resonance parameters, production properties,
 - decay properties, ...
 - resonances tend to be broad and plentiful, leading to intricate interference patterns, or buried under a background in the same and in other waves.

"Holography" Holography" Event-wise ML fit to all observables simultaneously $\omega(\xi) \equiv \frac{d\sigma}{d\Phi} = \left| \sum_{i}^{d} c_{i}R_{i}B(p,q)Z(L) \right|^{2}$ Event-wise efficiency correction $P(\xi) = \frac{\omega(\xi)\epsilon(\xi)}{\int \omega(\xi)\epsilon(\xi)}$

 $X(2^{-+}) \to f_2(1275)\pi$

 $f_2(1275) \rightarrow \pi\pi$

Tools: PWA

- Decompose to partial wave amplitudes
- \checkmark Make full use of data
- \checkmark Handle the interference
- Extract resonance properties with high sensitivity and accuracy

How to run it faster --in the era of O(10°) data sets

Computing bottlenecks in BES analysis

Algorithmic Analysis	Reduction: event selection, record useful information	Processing DST Bottle neck: I/O, CPU
Interactive Analysis	Final selection, plotting, "studies"	Processing Ntuple/Tree Bottle neck: I/O
Statistical Analysis	Extract physics	Fit (e.g. PWA,) Bottle neck: CPU

Computing bottlenecks in BES analysis

Algorithmic Analysis

Interactive Analysis

Statistical Analysis Reduction: event selection, record useful information Final selection, plotting, "studies"

Extract physics

Processing DST Bottle neck: I/O, CPU Processing Ntuple/Tree Bottle neck: I/O Fit (e.g. PWA, ...) Bottle neck: CPU

1, TAG-based preselection

 $J/\psi(1S)$

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$ PDG2012

 $\label{eq:mass_mass_star} \begin{array}{l} \mbox{Mass} \ m = \ 3096.916 \pm 0.011 \ \mbox{MeV} \\ \mbox{Full width} \ \Gamma = \ 92.9 \pm 2.8 \ \mbox{keV} \quad (\mbox{S} = \ 1.1) \\ \mbox{\Gamma}_{e\,e} \ = \ 5.55 \pm 0.14 \pm 0.02 \ \mbox{keV} \end{array}$

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/c)
•••		
$\gamma f_2(1270)$	(1.43 ± 0.11) $\times 10^{-1}$	3 1286
$\gamma f_0(1710) ightarrow \gamma K \overline{K}$	(8.5 $^{+1.2}_{-0.9}$) $ imes 10^{-1}$	·4 S=1.2 1075
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	$(4.0 \pm 1.0) imes 10^{-1}$	4 –
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	(3.1 ± 1.0) $ imes 10^-$	4

Phys. Rev. Lett. 110, 021601 (2013)

"the partial width of J/ ψ radiatively decaying into the pure gauge scalar glueball is predicted to be 0.35(8) keV"

How to access the 0.1% events of interests efficiently

- Typically, in an exclusive analysis @BES
 - events of interest are O(1/1000) in a data set
 - Event size is O(100) kB for a hadronic event
- Column-wise accessing

Bes Offline Software System (Gaudi) has a large overhead

How to access the 0.1% events of interests efficiently

• TAG: meta-data (thumbnail) of an event

A small and flat event data model for pre-selection

run#, rec#, run type, EventFilter result, Multiplicity of tracks/photons/e/ $\mu/\pi/K/p$, ...

- ✓ Every event has a TAG (very small, 1/400 of a reconstructed event--DST)
- ✓ Make cuts on TAG without opening DST
- ✓ Only access the selected DST events

Development

- BEAN: a light weighted ROOT-based analysis framework designed for the BES3 ANalysis (by Dubuna group, BES3).
- Hadoop: (<u>http://hadoop.apache.org</u>) distributed computing + distributed storage with high performance, low cost

(CPU directly access data on the local disks)

- Selective accessing requires better disk performance
- A test-bed is set up in IHEP's computing center
- 7 nodes, with 8 cores and 3T hard disk for each
- "Ready-for-use" (no re-development)
- We successfully run BOSS and BEAN jobs on the test-bed.

Implementation

- TagCreator:
 - create TAG from DST
 - Like a normal analysis, loop all the events, get the information for pre-selection of all the events
- TagCuts: interface to user's preselection cuts

...

//In the begin m_tagcuts->SetNGoodGamRange(2,10);

selector-> SetPreselection(m_tagcuts);
//In the event loop
m_tagCuts->IsAccepted(m_TTag)

Implementation

- Approach A:
 - individual TAG files (ROOT tree)→analysis TAG files →an index of selected events→access DST according to the index

Non-trivial for Hadoop

- high performance I/O for the tiny TAGs
- indexing the small tags
- locating the file/event on HDFS
- Approach B: (our current choice)
 - Append TAG as a branch of the "Event" tree in DST files.
 - Get the TAG for each event first to make a pre-selection
 - If pass, get the DST event

Performance

A typical case: event selection of $J/\psi \rightarrow K^+ K^- \pi^0$ K+, K-, N>=2 photon candidates, (~1/1000 of the total events) Kinematic fit of tracks and photons to the J/ ψ with mass constraint of π^0

Loop a DST Data file (127223 events)

ТооІ	Timing result
BOSS	89.3 s
BEAN	26.0 s
BEAN TAG-based pre-selection	2.2 s

- BEAN analysis is much faster than BOSS.
- TAG-based pre-selection can improve the performance by O(10).
- I/O performance can be improved by tuning the settings and by pre-skimming the data files.

Computing bottlenecks in BES analysis

Algorithmic Analysis

Interactive Analysis

Statistical Analysis Reduction: event selection, record useful information Final selection, plotting, "studies"

Extract physics

Processing DST Bottle neck: **I/O**, **CPU** Processing Ntuple/Tree Bottle neck: **I/O**

Fit (e.g. PWA, ...) Bottle neck: **CPU**

1, TAG-based preselection

2. GPUPWA

Likelihood calculation

Data parallelism: do the calculation for every event simultaneously

GPUPWA

N. Berger, B.J. Liu and J.K. Wang, J.Phys.Conf.Ser., 219, 042031 http://gpupwa.sourceforge.net

Data parallelism in event-wise likelihood PWA fit

GPUPWA

GPUPWA is our running framework

- Management of partial waves
- Interface to user defined amplitudes
- Interface to stream computing (OpenCL)
- · GPU based tensor manipulation
- GPU based normalization integrals
- GPU based likelihoods
- GPU based analytic gradients
- Interface to ROOT :: Minuit2 fitters
- Projections and plots using ROOT

 ♦ We build a cluster for BES3 PWA in computing center @IHEP (35 nodes X 4 GPUs, there will be an upgrade this year)
 ♦ Partial wave analysis of J/ψ→γηη, arXiv:1301.0053 to appear in PRD
 ♦ Spin-Parity Analysis of ppbar Mass Threshold Structure in J/psi and psi' Radiative Decays, Phys. Rev. Lett. 108, 112003 (2012)

Summary

• BESIII took 1.2 billion J/ψ events and 0.5 billion ψ' events.

And we are right now collecting $3 \times$ more Y(4260) decays...

Look forward to many new

results from BESIII!

子曰 工欲善其事 炎先利其器

When a craftsman wants to do a nice piece of work, he will always sharpen his tools first. -- Confucius

Thank you