
Initial Explorations of ARM Processors
for Scientific Computing

Peter Elmer - Princeton University
David Abdurachmanov - Vilnius University

Giulio Eulisse, Shahzad Muzaffar - FNAL

Power limitations for processors

• Over the past ten years
processors have hit power
limitations which place
significant constraints on
"Moore's Law" scaling.

• The first casualty was
scaling for single sequential
applications, giving birth to
multi-core processors.

From: "The Future of Computing Performance:
Game Over or Next Level?"

The Future of Moore's Law
• Even multi-core,

implemented with
large "aggressive"
cores is just a stop-
gap. The power
limitations remain.
The focus is shifting
to performance/
watt, not just
performance/price.

From: "The Future of Computing Performance:
Game Over or Next Level?"

Power and Data Centers
• How relevant is the power use in data centers?

• For a typical 4 year server lifetime, and taking into account the
full power efficiency, the power cost can already represent
~25-50% of the total cost. (Varies, but this are typical numbers.)

• In 2007 the US Environmental Protection Agency estimated the
power use of servers as 1.5% of total US power output. Taking
into account trends for efficiency, increased server use and
capacity it is estimated that power for server use could reach 5%
of the total generation in the US by 2016.

• Thus there are important economic drivers in play in the
market, focused on server power use.

ARM processors
• RISC processor with a long history going back to the BBC

Micro. Of interest today as the core processor used in the
vast majority of mobile devices.

• Current generation ARMv7/32bit, ARMv8/64bit products
expected in 2014

• Unit sales increasing
dramatically in
recent years
(typically cost and
profit/unit, however)

ARM Servers
• As power limitations have become important also in the

server market, there is an opportunity for ARM to enter a
market dominated currently by Intel, capitalizing on its
strength in low power (high performance/watt) processors

• ARM's business model is to license their design for the
processor core to others who then build the chip (typically
SoC) around that.

• This flexibility is clearly interesting in the mobile device
market, given the many constraints (power, size/form
factor, price/feature points). Now it is becoming interesting
also for the server market as they look for efficiency gains.

ARM Servers
• This has led to the introduction of ARM-based

servers in recent years, such as the Boston Viridis:

• 192 cores in a 2U rack mount, consuming <300W

• 48 quad-core nodes (1.4GHz Cortex-A9)

• $20k (reported)

• servers with the new ARMv8/64bit cores, expected
next year, will likely be the product that will either
create (or not) sufficient market share

Goals of an ARMv7 test port
• We currently do linux/x86-64 and OSX/x86-64 builds, in the past we

had linux/ia32 builds (including ia32 builds on x86-64). We have done
partial ports in the past to linux/PowerPC and OSX/PowerPC. Each port
usually flags or flushes out some number of problems both in the
generality of the build system and in the software itself.

• Use an ARMv7/32bit port as a stepping stone to an ARMv8/64bit,
hopefully resolving some of the eventual problems we will see.

• The capability to run applications on "small" cores will also provide an
interesting initial environment for general performance studies. We
expect that such "small cores", whether x86 or ARM, are part of the
future in any case.

• High core counts even on 32bit ARM servers can also be useful for
testing scalability of the multicore-aware framework CMS is developing.

ODROID-U2
• Do some initial tests with a small 32bit

ARMv7-A ~5W development board

• Exynos4412 Prime CPU

• 1.7GHz Cortex-A9 quad-core

• 2GB LP-DDR2 memory (512MB per
core)

• eMMC, microSD, 2xUSB 2.0, Ethernet
RJ-45

• $89 ($233 with cables, cooling fan,
power adaptor, 64GB eMMC, etc.)

• Fedora 18, ARMv7-A
Hard Floats, gcc 4.8,
ODROID kernel

• fc18_arm7hl_gcc480

Building for ARM
• Early build attempts done with QEMU. Slow and buggy.

• Now we have a test board: cross compilation or native builds?

• If we eventually do have proper ARMv8/64bit servers with
sufficient throughput for application use, we should be able to
build natively.

• CMS has also invested over the years in optimizing its build
system at many levels.

• The ODROID-U2 is actually reasonably powerful, so try a
native build!

Build system
• Use the same PKGTOOLS build and packaging system we use

for the standard linux and OSX x86-64 builds.

• Driven by build recipes written as rpm spec files which are used
(with a slight preprocessing) and a single driver script which
manages the dependencies among them.

• Heterogeneous mix of build systems encapsulated in spec files.
The CMS software (CMSSW) itself is built with SCRAM.

• Successfully built rpms can be uploaded to a central apt
repository to allow installation elsewhere, incl. other build
machines. Builds are configured to use existing rpms from apt
repo, incl. installation on local disk.

Build times on ODROID-U2
• ~4 hours mostly for gcc 4.8.0, but also a small set of

basic things we need for packaging:

• rpm, apt, zlib, ncurses, nspr, sqlite, etc.

• ~12 hours for all other "externals":

• ROOT, Geant4, Python, Fastjet, Valgrind, gdb, boost,
Qt, all generators, etc. Total of ~125 packages.

• ~25.5 hours for CMS software (CMSSW) - 3.5MSLOC of
C++, plus generated ROOT dictionaries

Build Issues Encountered
• No Oracle. But by construction no standard CMS grid-capable

workflows can depend on Oracle. Affects a few special things.

• Minor compilation configuration issues: -m32/-m64 don't
work, x86-ish assumptions leading to attempts to use SSE/
AVX

• Signedness problems for char/bit-fields (Intel signed, ARM
unsigned)

• Compilation of some translation units exhausted virtual
memory (mostly ROOT dictionaries: refactor...)

• Patch needed for ROOT Cintex trampoline

Build Status
• All externals build except Oracle and one online-only

package

• 99% of CMSSW builds: a few remaining packages
require Oracle plus a few being iterative broken/fixed
as we sort out various last issues.

• All build recipes/patches available from:

• git://github.com/cms-sw/cmsdist.git

• branch "IB/CMSSW_6_2_X/fc18_armv7hl_gcc480"

CMS Integration Builds

CMS Integration Builds

Benchmarks - Simulation

Type Cores Power Events/
min/core

Events/
min/Watt

Exynos441
2 Prime @
1.704GHz

4 4W? 1.14 1.14

Xeon
L5520 @
2.27GHz

2x4 120W? 3.50 0.23

Xeon
E5-2630L
@ 2.0GHz

2x6 190W? 3.33 0.21

Benchmarks - Notes
• These are very quick and dirty benchmarks, this is a work

in progress. Numbers are "indicative", not final.

• For power I used the TDP numbers from
www.cpubenchmark.net, plus the quoted number for the
ODROID (roughly measured by us), obviously not the
total power cost especially for the Xeon servers

• I used one Nehalem (Q1 2010 release) and one Sandy
Bridge (Q2 2012) "L" machine, both at CERN, vocms101
and vocms18. HT was on for the latter, but I have done
just quick single core benchmark tests.

http://www.cpubenchmark.net
http://www.cpubenchmark.net

Porting IgProf to ARM?
• IgProf (igprof.org) is a sampling performance and memory

profiler. Some notes on the ARM port:

• ARM assembly much simpler than the `x86_64` one, all
instructions are 32bit long: easier to decode. Documentation is
excellent.

• However its RISC-ness introduces a few new quirks to be
treated when instrumenting (conditional execution, linker
peculiarity, less space for the actual instrumentation in the
preamble).

• RDTSC equivalent is not available in user mode.

• `libunwind` works our of the box, performance to verify

http://igprof.org
http://igprof.org

Next Steps
• Run an integration build every day, including runtime tests

• Proper benchmarking with all cores loaded, warmed up,
etc. ("by the light of day....")

• Benchmarking of the CMS reconstruction

• Detailed performance studies, comparisons and validation

• Tests with multithreaded applications: CMS framework in
preparation, Geant4-MT, etc.

• Repeat on ARMv8/64bit when available

Summary

• Still very much a work in progress, but we
are now beginning to run a standard
fc18_arm7hl_gcc480 integration build

• We have some first benchmarks of real
applications on ARMv7 processor

• Very much looking forward to
ARMv8/64bit servers and seeing whether
this flies or not in the market

• We have done some initial explorations of the use of ARM
processors and nearly completed a port to ARMv7 of the
entire stack of software used by CMS

