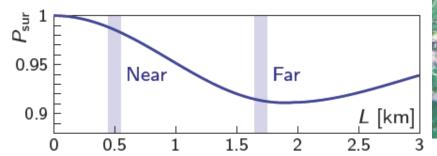


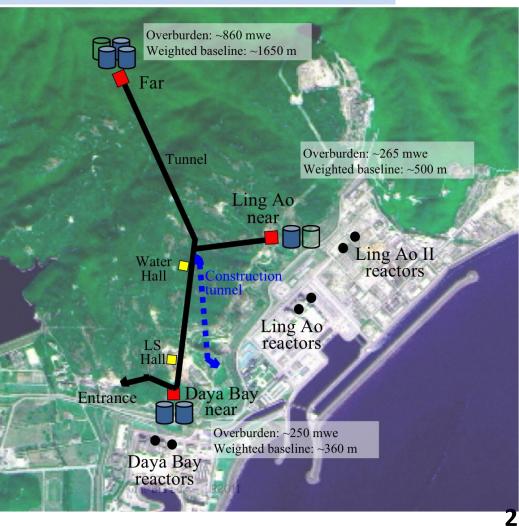
Performance quality monitoring system (PQM) for the Daya Bay experiment

LIU Yingbiao

Institute of High Energy Physics On behalf of the Daya Bay Collaboration

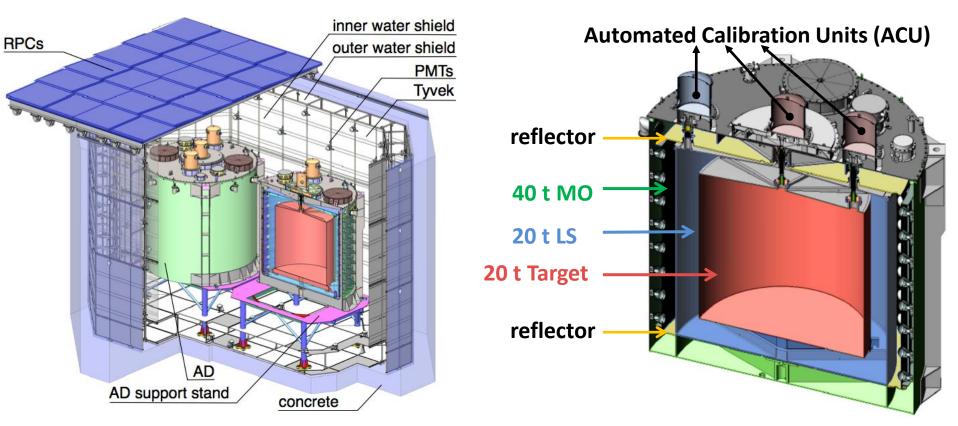
ACAT2013, Beijing, May 16-21, 2013


The Daya Bay Experiment

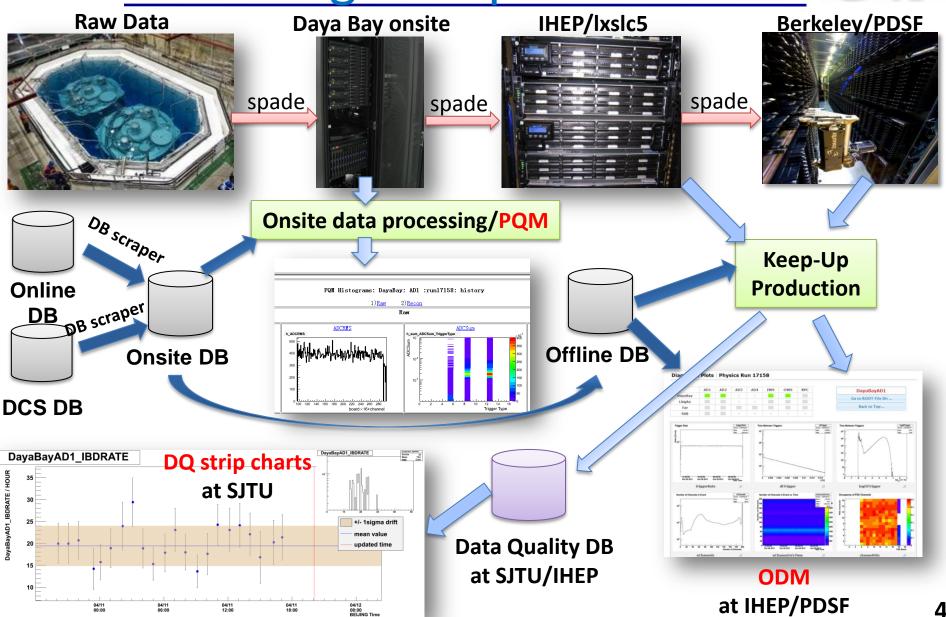

Daya Bay is a reactor neutrino experiment designed to measure $sin^2 2\theta_{13}$ to 0.01 at 90% CL

- 6 reactor cores, 17.4 GW_{th}
- Relative measurement
 - 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic shielding

Table 1. Vertical overburden, muon rate R_{μ} , and average muon energy $\langle E_{\mu} \rangle$ of the three EHs.

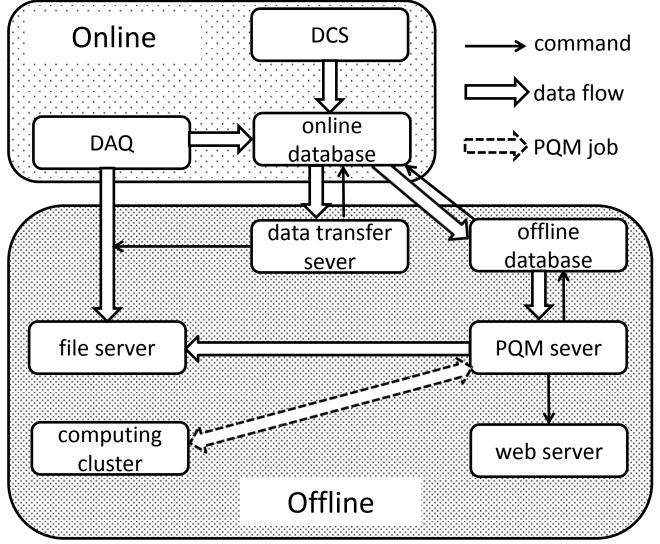

	overburden (m.w.e)	$R_{\mu} (\text{Hz/m}^2)$	$\langle E_{\mu} \rangle / \text{GeV}$
EH1	250	1.27	57
EH2	265	0.95	58
EH3	860	0.056	137

The Daya Bay Detectors



- Multiple Anti-neutrino Detector (AD) modules to reduce syst. err.
 - Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers
 - RPC: 4 layers at the top + telescopes

A global picture


Offline computing environmen 13

• Online DB

- Raw data file info.(DAQ)
- Hardware info.(DCS)

• Offline DB

- Raw data file info.
- Calib. constants
- etc.
- Portable Batch
 System (PBS)
 - Allocating jobs

6

Data volume — ~320 files/day, ~1GB/file 11 servers			Even	t rate (kHz)	EH1 ~1.2	EH2 ~1.0	EH3 ~0.6
	Descr	ription		Offline Disk	Volum	e (~25 ⁻	ТВ)
File Server	Stora	ge of raw data files					
		Transferring raw data files from DAQ to the File Server		5 1			
Offline Database Server		cting info. from onlin Irchiving calib. consta		2	17		
PQM Servers (pqm1-2) pqm2 for backup				Raw data files Software			
User Farms (farm1-5) Running user jobs		ing user jobs		Onsite users PQM			
Web Server	Displaying figures produced the PQM		ed by	56 cores in total, 16 of the are dedicated for PQM		them	
CPUs	гI	pqm1, farm1-2	Int	el (R) Xeon (R) E5506	@2.13	GHz
– 8 cores/server		pqm2, farm3-5	Intel (R) Xeon (R) E5420 @2.50 G			GHz	

Offline computers at Daya Bay

The PQM

Requirements

- > High-level histograms for monitoring sub-detectors and data quality
- Process data asap.
- Process multi-data-stream
 - 3 EHs with independent data stream
- Developed analysis modules in the NuWa framework
- Define many high-level histograms for different purposes
- Developed a Control Script for running the PQM

Offline software

NuWa

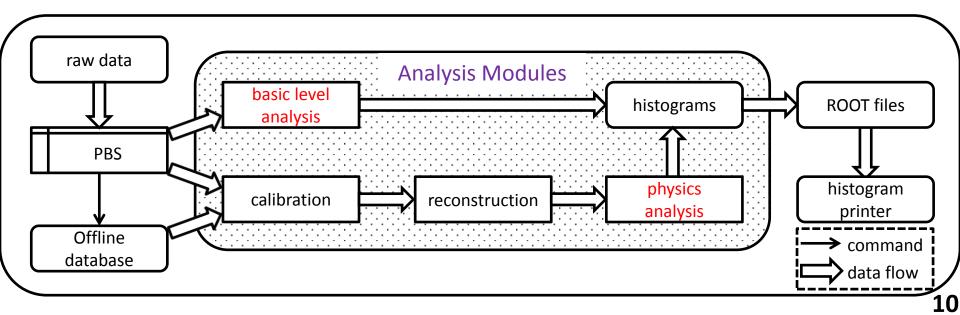
- Employs Gaudi's event data service
- Provides the full functionality for simulation, recon. and physics analysis
- Job modules
- Recon. algorithms based on the charge pattern of the PMTs.
- Auto-building system using the Bitten plug-in of trac.

Analysis modules in PQM

- Four modules
 - Two for histograms of elec. channel info. and calibrated PMT info of ADs and the water shields
 - One for histograms of reconstruction level
 - The other one for the RPCs
- Flexible to add more modules (supernova trigger analysis module)
- Dynamically creating histograms
 - Different configuration in 3 EHs
 - Reducing file volume
 - Improving processing speed

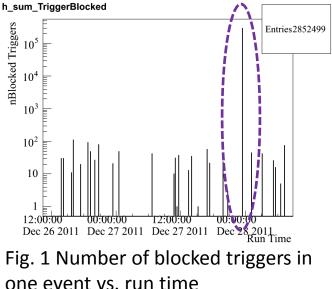
Histograms Produced by PQM

Detector Unit	Level	Histograms
PMT Basic Mean		Mean of ADC, TDC and preADC, RMS of ADC, TDC and preADC, Δ ADC,
		dark noise, dark rate and TDC vs channel ID, hit rates, ADC sum vs. trigger
		types, ADC sum, number of blocked triggers vs. run time, number of channels,
		trigger types
	Reconstruction	y vs. x, z vs. radius, energy, energy vs. radius, energy vs. z, event rate vs.
		radius, event rate vs. z
RPC Basic Patch I		Patch map, trigger rate map, map of fraction of triggers with >8 strips, trigger
		rate vs. run time and time interval for 4-fold coincidence, time interval between
		system triggers, efficiency maps of each layer, layer efficiency, FEC error types
		vs. run time, RTM error types vs. run time, layer hit maps, hit number vs.
		strip ID, number of triggered layers per readout module, number of triggered
		modules per system trigger, singles rate map for each layer, singles rate, system
		trigger rate vs. run time


Table 1. The histograms produced by analysis modules in PQM for monitoring detector performance and data quality.

Data Flow of the PQM

- Control script
 - In Python language
 - In charge of the logic of the PQM running
 - Queries the offline DB (~10 s) and submit jobs to the PBS
 - Sending signal to the Web Server for web display
 - Save ROOT files for each run to the File Server
- Using latest calib. constants for recon.
- Figures are displayed in around 40 minutes



Daya Bay	Dayabay Performance Quality Monitoring web interface			
013	Version 0.42			
	● realtime ● history: Run = Submit	35853 ADCalib EH2-Merged 39180 Physics EH3-Merged 39179 FEEDiag EH3-WPI 39178 Pedestal EH3-WPI 39177 Physics EH2-Merged	▼ ▲ Ⅲ	Main page
Sites: Daya	Bay Far LingAo S	39176 Physics EH2-Merged 39176 Physics EH2-Merged 39175 FEEDiag EH2-WPI 39174 Pedestal EH2-WPI 39173 Physics EH1-Merged SAB		

Detect(AD1		DayaBayAD1
AD2 IWS OWS	Realtime page	LingAo: Run39177 (subfile0018) 2013-05-10 05:45:28 (UTC) DayaBay: Run39173 (subfile0024) 2013-05-10 05:56:15 (UTC) Far: Run39180 (subfile0009) 2013-05-10 05:23:39 (UTC)
RPC		1) <u>Raw</u> 2) <u>Recon</u>

Example Histograms

- Figures produced by the PQM can be compared with standard ones defined by the Data Quality Working Group (DQWG)
- Shift crew report possible problems to the DQWG

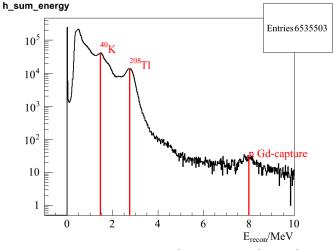
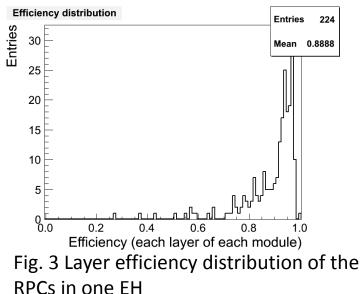
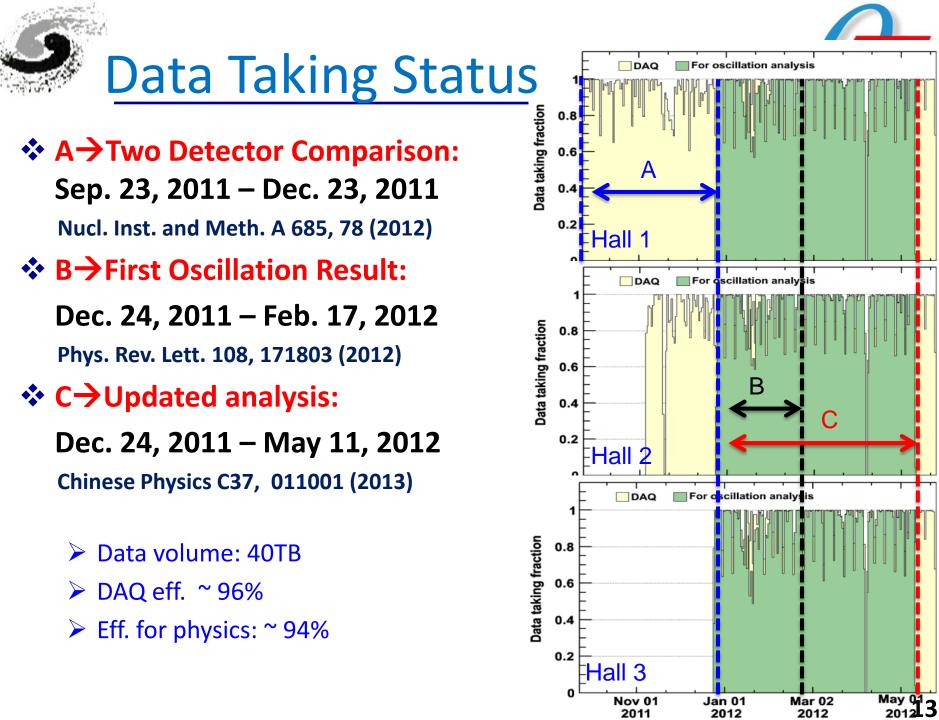
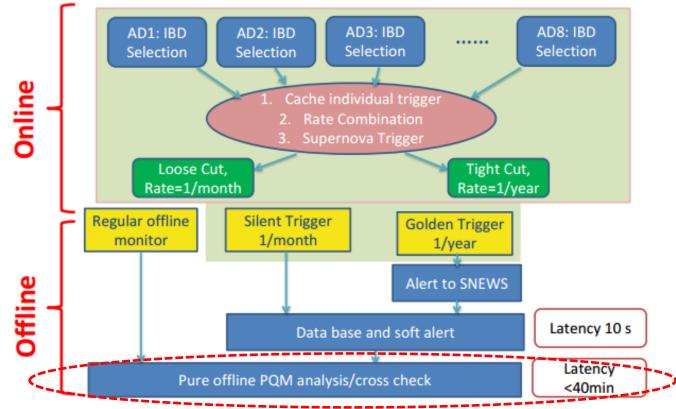




Fig. 2 Reconstructed energy distribution for all triggers in one AD



The PQM in Daya Bay's SNEWS 13

- Collaborators from Tsinghua University are developing supernova trigger in Daya Bay experiment
- Offline analysis will be implemented in the PQM

Thanks Hanyu WEI for providing me the diagram. More details in his talk 'Supernova Trigger in the Daya Bay Reactor Neutrino Experiment' in Track 2.

The PQM has been developed for monitoring sub-detectors and data quality.

Data processing by the PQM is running smoothly at Daya Bay

Analysis figures can be displayed about 40 minutes after the DAQ closes the raw data file.

Playing an important role for the data taking.

Will implement SN trigger in the PQM.