
USE OF CHECKPOINT-RESTART FOR COMPLEX
HEP SOFTWARE ON TRADITIONAL
ARCHITECTURES AND INTEL MIC

Peter Elmer
Princeton University

Gene Cooperman, Kapil Arya

Northeastern University

Andrea Dotti
SLAC

CHECKPOINT-RESTART
• It is desirable in certain circumstances to "checkpoint" the state
of a unix process, or set of processes, to disk with the
possibility of restarting it at a later time.

• This can be done in an application-specific custom fashion, but
it requires the addition and maintenance of dedicated code.

• A generalized technology capable of checkpointing all types of
applications is thus desirable. In fact such technologies have
been in use in High Performance Computing (HPC) and batch
systems since more than 20 years.

INTERESTING USE-CASES
• Avoiding CPU-intensive initialization steps in frequently run applications

• Reproducibility of problems in long running jobs for debugging

• The application can be "replayed" from a point just before the error
or crash, rather than from the beginning

• In situations where resources are being used opportunistically, it can be
used to efficiently give access back to the "owner" and then later restart
when resources are free again

• In interactive applications, the current state can be saved ("workspace")

• For long-running parallel applications sensitive to hardware failure, the
state of calculations can be saved periodically to allow restart.

DMTCP

• This presentation will present some information about tests
done with the Distributed MultiThreaded CheckPointing
package (DMTCP), developed at Northeastern University

• http://dmtcp.sourceforge.net

http://dmtcp.sourceforge.net
http://dmtcp.sourceforge.net

DMTCP

Userspace checkpointing, no
kernel-level access required

Checkpoints multithreaded
applications

Checkpoints distributed
applications

Minimum runtime overhead

Optional compression of
checkpoint images

Key Features

Open source

Can handle fork, exec, ssh,
open file descriptors,
TCP/IP sockets, etc.

Works on linux and
supports a wide range of

kernels

BASIC IDEA
• No code changes or recompilation are required, the
application can simply be run as:

• dmtcp_checkpoint cmsRun MinBias_cfi_GEN_SIM.py

• and an external checkpointing "coordinator" is used to trigger
the checkpoint.

• Alternatively a dedicated DMTCP API can be used from within
the application to place control of checkpointing into the
application itself, e.g. to allow checkpointing at predefined
specific points during the execution such as "every N events"

CMS EXAMPLE
• Quick test with CMS Framework-based generation/simulation application,
memory footprint ~750MB RSS

• ~10s required to create compressed checkpoint image, 220MB

• 1-2s for uncompressed checkpoint

Trigger checkpoint externally while processing event #5

CMS EXAMPLE
• And restart:

• This was on x86-64, ARM also supported.

MULTI-THREADED GEANT4

• Geant4 version10 is being prepared for release in Dec2013

• A major feature is the possibility to simulate events in parallel
on different threads

• The results reported here use the internal alpha version, which
is still being heavily developed

• A public beta is expected at the end of June

ADDING DMTCP TO A G4
APPLICATION

• Compiled against the alpha version of Geant4.10 (May2013)
with multithread (MT) support enabled

• Use Geant4 "user-hooks" to add checkpointing functionality

• No need to modify or recompile Geant4 code itself

EXAMPLE HOOKS
MyUserWorkerInitialization::WorkerRunStart() and

::WorkerRunEnd()

Caution: from alpha release, names may change for final G4.10

TESTING
• To test the use of checkpointing with the multithreaded
Geant4 two platforms were used

• A standard Intel Xeon box (32 logical cores)

• An Intel Xeon Phi co-processor (240 logical cores)

• The preliminary results show good linearity of scaling

• Minor issues stemming from the use of the alpha version: I/O
optimization on co-processor not done yet

TESTING
• Any Geant4 application has an initialization portion where the
following things are done:

• reading in the geometry, e.g. from xml files

• initializing the geometry

• initializing the physics tables, e.g. cross section tables

• Random Number Generator (RNG) seeds are pre-generated
for each event to guarantee reproducibility

• Threads are spawned and events are processed in parallel

HOT START

• The cost of this sequential initialization piece is quite high if
many cores are idle waiting for it to finish, as on the Intel Xeon
Phi coprocessor (60 physical cores, 240 logical cores)

• The cost of this initialization (in terms of idling other cores)
can be significantly reduced by checkpointing

EXAMPLE WORKFLOW
Initialization
• Geometry Construction (GDML)
• Physics Models initialization (reading DB, building cross-section tables)

Checkpointing
• Threads are spawn
• Threads are initialized

EventLoop
• Threads process events

Checkpoint
Status

Restart from
This point

Restart possible in a fraction of time required for a cold start

RESULTS
• Use the "FullCMS" Geant4 benchmark application on an Intel Xeon
Phi co-processor

• Checkpoint image preparation:

• Initialization takes about 5 minutes

• Checkpointing takes about 1 minute (I/O issue on Xeon Phi?)

• Checkpoint image file size is 1.4GB (uncompressed)

• Restart from checkpoint image file takes less than 10 seconds

• The checkpoint image can be distributed to other nodes and the
simulation process "cloned" (need to reset RNG seeds, though)

TAILS
• A simulation job will finish only when all requested events have been
simulated. Some events can take more time than others.

• Some threads may finish earlier than others processing "slow" events

• For a fraction of the job runtime, the number of active threads may be
less than the number of cores assigned to the job

• Strategy:

• checkpoint when the number of active threads drops below some
threshold and kill process.

• Start a new job and repeat

• When enough "tails" have accumulated, start them together

RESULTS
• Simplified test:

• Start simplified CMS with 10 threads

• The first 5 events process "fast" events, others "long" events

• If active threads drop below 6, then checkpoint

• Restart application from checkpoint and verify that all events
are completed

• On real-life applications one needs to identify "fast" and "long"
events, of course

G4-MT CONCLUSIONS
• Preliminary tests with an alpha version of Geant4.10 (MT-capable)
show interesting results

• Checkpointing can be used to:

• Perform "hot start" of MT applications, substantially reducing the
initialization time

• Suspend jobs with "tails" (a few long events) production systems to
increase CPU utilization efficiency

• We did not need to modify Geant4 code

• Checkpointing can be added in the application via Geant4 user-
hooks, and used to trigger the checkpoint at the correct moment

SUMMARY
• We have done tests and demonstrated the the checkpointing
and restart of large HEP applications (CMS, ROOT, Geant4)
using the DMTCP checkpoint package

• We have demonstrated and checked basic performance of the
checkpointing on x86-64, ARM and Intel MIC, including both
single and multithreaded applications

• Still some work to do to bring into production use, but we
expect that this technology has great potential to provide
interesting new capabilities for software efficiency, debugging,
etc.

