Bartłomiej Hnatio

SIMONE

SIMulations Of Nuclear Experiment and data analysis framework

Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia AGH University of Science and Technology, Kraków, Poland

Exotic nuclei physics

- •Light nuclei (A < 50)
- •Exotic structure
- Rare decay modes

Experimental equipment

- Our RIB's: typical beam energies < 100 MeV/A
- Few detector types to disposal
- Investigated processes take place inside target

Data processing

- Energy and time calibrations
- Particle identification + Trajectories reconstruction
- Physical spectra reconstruction
- MC simulations for data
 analysis

Motivation

- A lot of experiments are performed
- All experiments based on the same pattern
- Simulations used for planning of experiment and for comparison with theory as well
- Generalization of tasks saves time

Existing tools

- Tools for analysis already available (ROOT, Geant4, etc.) but are too general.
- Existing tools should be adopted for needs of our field.
- We don't need many HEP features
- Too much programming for simple tasks

Experimental branch

- Calibrated data stored container class objects
- Output generated with standardized structure and format.

Simulations

- All steps can be routinized!
- Theoretical input is unique for each experiment
- Data on early steps also important
- Output data is stored in ROOT Trees of container classes

Simulated data

 Theoretical
 →
 Reaction
 Detector

 Model
 Events
 →
 products
 →
 response

 tracking
 forming

Simulations

- Containers and Calculators
- Arbitrary distributions, various inputs and outputs for reactions
- Tracking and energy losses in detectors:
 - TGeo + various E-losses
 - •Geant4 externally
- Configuration of simulations in small data exchange files.

Analysis

- Too complex for just "click and wait" approach.
- Routines helpful at:
 - Beam diagnostics
 - Geometry optimization
 - Reconstruction of hits' coordinates
 - Auxiliary methods for reconstruction of events
- Currently under development

Graphic User Interface

Edit particle x	Simulation GUI _ 🗆 🗙
Basic properties:	File Reaction Materials Detectors Info View Preferences
Name: 17Ne Z number: 10 2 Å number: 17 2 Mass [MeV] 15853.1860 Kinetic energy [MeV]: 0.0000 2 Observable? Excitation states:	Particles Reactions Materials Detectors
Width Mean Shape Strength Add new state	150
1 0.089 1.288 gauss 🗘 1 Remove selected	p1 p2
2 0.112 1.850 Iorentzian 🗘 1	17Ne
	Add Edit Remove
<u>C</u> ancel <u>O</u> K	Generate kinematics Generate tracking

CsIDetector x					
	Name	Value	Units	Туре	Description
1	BackDeadLayer	0	um	double	default description
2	FrontDeadLayer	14.5	um	double	default description
3	Thickness	50000	um	double	default description
4	Width	200	mm	double	default description
5	Height	200	mm	double	default description
6	Name	E_detector	no units	string	default description
7	Material for main	•	no units	material	With what material main part of detector will be build
8	×	0	mm	double	default description
9	Y	0	mm	double	default description
10	Z	150	mm	double	default description

Cancel

Features

- Predefined detector geometries
- Kinematic calculator
- User friendliness
- Portability
- Saving experimental configuration (compatibility)

AGH Cracow

Plans for the future

- More development and validation
- Testing on multiple platforms
- Add new, specialized detector types
- Diversification of calculation methods
- Handling of ion-optics

Summary

- Many tasks can be isolated and routinized
- Development of special tools started in an international cooperation
- Advantageous approach for analysis is used
- Early version was released

Thank you for your attention!