Supernova Trigger in the Daya Bay Reactor Neutrino Experiment

Hanyu WEI Center for High Energy Physics Tsinghua University (On behalf of Daya Bay Collaboration)

ACAT 2013 May 16-21, 2013

Outline

- Daya Bay Reactor Neutrino Experiment
- Supernova burst neutrinos
 - Importance
 - Energy & Timing Spectrum
 - Excepted SNv Events
- Daya Bay's supernova online trigger
 - Advantages
 Advantages
 - Work Flow
 Second S
 - Trigger Strategy
 - Test Run Result
- Sensitivity
- Summary

Detection of Anti-electron-neutrino

IBD(inverse beta decay)

 $\overline{v}_{e} + p \rightarrow e^{+} + n$ $\begin{array}{c} \text{Prompt: } e^{+} \text{ annihilation Delay: neutron capture} \\ \text{Neutrino events: coincidence in time and energy} \\ 0.3b \\ 0.$

Three experimental halls

Far	
Target mass: 80(Gd) +80(l	LS) ton
1600m to LA, 1900m to DY	YB
Overburden: 350m	
Muon rate: 0.04Hz/m ²	T ****

Daya Bay near

Baseline: 360m Overburden: 98m

40(LS) ton

Target mass: 40(Gd) +

Muon rate: 1.2Hz/m²

Ling Ao near Target mass: 40(Gd) +40(LS) ton Baseline: 500m Overburden: 112m Muon rate: 0.73Hz/m²

Anti-electron-neutrino Detector

Importance of SNv study

- SNv are a key diagnostic for the dynamics of core collapse and SN explosion
 - ~ ~99% of the stellar collapse gravitational binding energy
 - Arrive a few hours before optical SN explosion (Early Warning)
- Neutrino properties
 - Oscillation
 - Mass hierarchy
 - Matter effect
 - ۰۰۰ 🔇
- Contribute to astrophysics and cosmology
- Joint analysis with gravitational wave experiment
- ٠

SNv Spectra

T. Fischer et al. Astron. Astrophys. 517(2010) A80

5/16/2013

ACAT2013

Expected SNv Events

Expected events for a SN at 10kpc (Galaxy Center), emission of 5×10^{52} erg in *anti-eletron-neutrino*, average energy 12MeV, compatible with SN 1987A.

Detector	Type	Location	$\operatorname{Mass}[kt]$	Events	Status	
IceCube	Ice Cherenkov	South Pole	0.6/OM	10^{6}	Running	
Super-K IV	Water	Japan	32	7000	Running	
LVD	Scintillator	Italy	1	300	Running	
KamLAND	Scintillator	Japan	1	300	Running	
SNO+	Scintillator	Canada	1	300	Commissioning	2013
MiniBOONE	Scintillator	USA	0.7	200	Running	
Daya Bay	$\mathbf{Scintillator}$	China	0.32	100	Running	Several tens
Borexino	Scintillator	Italy	0.3	80	Running	of neutrinos
BST	Scintillator	Russia	0.2	50	Running	Within 10s
HALO	Lead	Canada	0.079	tens	Almost ready	Auvantages
ICARUS	Liquid argon	Italy	0.6	200	Running	1.10

Data from Geoge G. Raffelt, *Neutrinos and the Stars*, arXiv: 1201.1637v2

Supernova Online Trigger in DYB

- ♦ Better Energy Resolution: ~3% @10MeV
- Time accuracy: GPS < 200ns</p>
- Energy Threshold: 0.7MeV (2MeV)
- Time latency: ~10s
- 8AD deployment in 3 experiment sites 1km apart from each other
 - Better rejection to muon-induced fast neutron background than one single detector
 - Increase Signal-to-Background ratio, thus increase sensitivity of SN explosion

Compared with SK

	Daya Bay	Super-K		
Target Mass	0.32kt	22.5 kt; other experiments the same magnitude; the fourth L.S. in the world and increase 10.6%		
Energy Resolution	0.3 MeV @10 MeV	1.6MeV@10 MeV		
Threshold	0.7 (2) MeV	10 MeV		
Powerful Bkg rejection	8 AD deploying in three sites	Other experiment one module or in the same site		
Latency	~10s	need complicated reconstruction (exclude spallation neutron) >5min		
Sensitivity	100% to 20kpc	100% to 100kpc		
Pointing	no	SuperK yes		

Supernova Online Trigger

Daya Bay is online looking for increases in multi-AD signals in a 10s-time-window with low latency.

Online IBD Selection

An IBD selection program embedded into DAQ

- Access to all unpacked raw data
- Timestamp from GPS

Selection

- Simple reconstruction (is different from common offline)
- Selection cut (optimized using offline reconstructed data)
- Send IBD candidates to IS (information service of DAQ) server *promptly*

Criteria for selection:

- 1. Simple
- 2. Low single AD trigger rate
- 3. High efficiency for $SN\nu$

Selection Result

5/16/2013

ACAT2013

Single AD SNv Selection Efficiency

Online Combination and Judgement 1. Cache individual trigger 2. Rate Combination 3. Supernova Trigger Loose Cut, Rate=1/month

1. Cache each AD's IBD selection to supernova trigger server

Count the events within 1s for each AD labelled with timestamp

2. Combine all ADs' event counts

Every 1s sum up the event counts in the previous 10s for each AD

Form a *combination case* of the event counts in the same 10s of all ADs
Judge the supernova trigger

- Set supernova trigger cut: sets false trigger rate
- Judge combination case against supernova trigger cut

Trigger Table: combination cases ordered by trigger rate

Trigger Table & Trigger Cut

- Study potential background to supernova triggers
- List of combination cases ordered by trigger rate for sliding 10 seconds

Dataset: All 6-AD data (Dec. 24, 2011 ~ Jul. 28, 2012)

1	AD1	AD2	(AD3)	AD4	AD5	AD6	SUM	COUNT	RATE(Hz)	
i	0	0	0	0	0	0	0	10325376	0.63131593	1
	0	1	0	0	0	0	1	1561089	0.09544837	Sum:
ļ	1	0	0	0	0	0	1	1552738	0.09493778	0.897Hz
	0	0	1	0	0	0	1	1234517	0.07548105	<u> </u>
	1	1	10	0	0	0	2	239280	0.0146301	
i	0	1	1	0	0	0 1	2	188711	0.0115382	This cut:
I	1	0	1	0	0	0	2	186826	0.01142295	1 - 0.897 =
l	0	0	0	1	0	0	1	131401	0.00803414	0.103Hz
!	0	0	0	0	1	0	1	130820	0.00799862	~1/10s
i	0	0	10	0	0	1	1	128114	0.00783317	-/ -00
i	0	2	0 1	0	0	0 1	2	120530	0.00736947	
I	2	0	0	0	0	0	2	117117	0.00716079	
	0	_ 0 _ /	2	<u>ر</u> ۱	0	_ 0	2	75527	<u>0.00461788</u>	

DYB near site:LA near site:Far site:~0.015Hz~0.012Hz~0.0012Hz

A descending order

Combination case 1-0-1-0-0 means 10s counts from AD1 to AD6

Illustration for Trigger Table & Trigger Cut

Correlation between ADs

- Advantage of using trigger table instead of theoretical prediction
 - orrelation between ADs
 - Real data, real background

	Correlation	AD1	AD2	AD3	AD4	AD5	AD6
Duch [AD1	1	0.0027	0.0007	-0.0003	-0.0002	0.0002
עא לע	AD2	-	1	0.0007	-0.0004	0.0003	-0.0002
	AD3	-	-	1	0.0002	-0.0002	-0.0002
Г	AD4	-	-	-	1	0.0009	0.0007
Far -	AD5	-	-	-	-	1	0.0011
L	AD6	-	-	-	-	-	1

Main reason for the correlation: The muon gets through the detectors in one site and induces fast neutron in the path

Test Run Result

- Data Quality Check: Good
- Time consumption:
 - <0.4% of total livetime</p>
 - > No block

Based on previous half year data, the supernova trigger table made a good prediction on false alarm rate.
rate variance

Based on trigger table:

Silent trigger threshold set to 0.373 Hz \pm 0.030Hz Golden trigger threshold set to 0.102 Hz \pm 0.014Hz

Real online trigger rate: Silent: 0.345 Hz Golden: 0.120 Hz

Real offline trigger rate: Silent: 0.410Hz Golden: 0.090Hz Due to different reconstruction methods online and offline

Online Sensitivity

- Expected SNv events (SN1987A-type) $F_{\bar{\nu}_e} = 2.18 \times 10^{11} cm^{-2} \frac{L_{\bar{\nu}_e}}{5 \times 10^{52} erg} \frac{12 MeV}{E_{av}} (\frac{10 kpc}{D})^2$
- Within 10 seconds ~98% events
- Single AD efficiency to SNv \sim 70%
- Trigger Cut
 - Determined by trigger table
 - Background trigger rate < 1/120days</p>
- Each combination case trigger rate of SN
 - Assuming AD mutually independent
 - Poisson distribution
 - Neglecting relative AD differences <1%</p>

Sensitivity Calculation

- Locate the background in the coordinate axis as before
- For each combination display the SN explosion trigger rate
- Beyond the cut will cause a trigger
 - Sum the probability to get the sensitivity

The sensitivity here is for online supernova early warning system in Daya Bay, not for offline analysis.

Result

Sensitivity for 1987A-type SN 100 90 6AD 80 **Galaxy** Center (~8.5kpc) •8AD prediction Sensitivity (%) 70 60 Target Mass Only 50 40 30 20 10 0 Milky Way Edge 10 100 (<24kpc) **Distance (kpc)**

Independent variable
Sensitivity function
Detector(M×L/D²)
Detector factor: selection
cut, efficiency, background,
trigger strategy ...

6AD: multi-AD result Target Mass Only: Put AD together and just consider the event summation (like one detector with 6-AD target mass) Same trigger cut

90% sensitivity ~ 3.6×10⁻⁵⁰ kpc²/kt·Erg

Offline Part

- Sending supernova trigger info outside via DIM mechanism to a DIM client
- Alert to SNEWS by mail application
- Auto-write into database
- Regular PQM (Performance Quality Monitoring) cross check
- Coming test run to validate the entire design

Summary

- Daya Bay Reactor Neutrino Experiment has advantages on supernova online trigger
 - Better energy resolution
 - Time accuracy
 - Low energy threshold
 - Low time latency
 - Background suppress with 8AD deployed in 3 sites
- ~100% sensitivity to Galaxy center and ~90% to Milky Way edge with 6-AD data, 8-AD adds ~8% to Milky Way edge.
- Test run preliminarily implies the Daya Bay's supernova online trigger works.
- Daya Bay officially in SNEWS in near future.

Thank you for your attention.