Supernova Trigger in the Daya Bay Reactor Neutrino Experiment

Hanyu WEI
Center for High Energy Physics
Tsinghua University
(On behalf of Daya Bay Collaboration)

ACAT 2013
May 16-21, 2013
Outline

- Daya Bay Reactor Neutrino Experiment
- Supernova burst neutrinos
 - Importance
 - Energy & Timing Spectrum
 - Expected SNv Events
- Daya Bay’s supernova online trigger
 - Advantages
 - Work Flow
 - Trigger Strategy
 - Test Run Result
- Sensitivity
- Summary
Detection of Anti-electron-neutrino

- IBD (inverse beta decay)

\[
\bar{\nu}_e + p \rightarrow e^+ + n
\]

Promt: \(e^+\) annihilation
Delay: neutron capture
Neutrino events: coincidence in time and energy

\[
0.3\,\text{b} \quad \rightarrow + p \rightarrow D + \gamma (2.2\,\text{MeV}) \quad (\text{delayed}) \quad 180\mu s
\]

\[
50\,\text{kb} \quad \rightarrow + Gd \rightarrow Gd^* \rightarrow Gd + \gamma's (8\,\text{MeV}) \quad (\text{delayed}) \quad 28\mu s \quad 0.1\%\text{Gd}
\]

- Three experimental halls

Far
- Target mass: 80(Gd) + 80(LS) ton
- Baseline: 1600m to LA, 1900m to DYB
- Overburden: 350m
- Muon rate: 0.04Hz/m²

Daya Bay near
- Target mass: 40(Gd) + 40(LS) ton
- Baseline: 360m
- Overburden: 98m
- Muon rate: 1.2Hz/m²

Ling Ao near
- Target mass: 40(Gd) + 40(LS) ton
- Baseline: 500m
- Overburden: 112m
- Muon rate: 0.73Hz/m²

5/16/2013 ACAT2013
Anti-electron-neutrino Detector

Components:
- Overflow Tank
- Calibration Pipe
- Top Reflector
- Cable Dry Box
- PMT Cables
- Radial Shield
- PMTs
- 3-m Acrylic Vessel
- 4-m Acrylic Vessel
- Bottom Reflector
- Stainless Steel Tank
- Oil
- GdLS

Dimensions:
5 m
Importance of SNv study

- SNv are a key diagnostic for the dynamics of core collapse and SN explosion
 - ~99% of the stellar collapse gravitational binding energy
 - Arrive a few hours before optical SN explosion (Early Warning)
 - SN explosion rate ~0.01/year in kpc ~1/year in Mpc

- Neutrino properties
 - Oscillation
 - Mass hierarchy
 - Matter effect
 - ...

- Contribute to astrophysics and cosmology
- Joint analysis with gravitational wave experiment
 - ...

ACAT2013 5/16/2013
SNν Spectra

![Graph showing SNν Spectra](image)

Integrated over 10s

Reactor Neutrino

![Graph showing Reactor Neutrino](image)

Prompt ν\textsubscript{e} burst

![Graph showing Prompt ν\textsubscript{e} burst](image)

Accretion

![Graph showing Accretion](image)

Cooling

![Graph showing Cooling](image)

>95% luminosity within 10s

Note: The images and graphs are placeholders for actual content. The text is formatted to represent the information accurately.
Expected SNv Events

Expected events for a SN at 10kpc (Galaxy Center), emission of $5 \times 10^{52}\text{erg}$ in anti-electron-neutrino, average energy 12MeV, compatible with SN 1987A.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Type</th>
<th>Location</th>
<th>Mass[kt]</th>
<th>Events</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube</td>
<td>Ice Cherenkov</td>
<td>South Pole</td>
<td>0.6/OM</td>
<td>10^6</td>
<td>Running</td>
</tr>
<tr>
<td>Super-K IV</td>
<td>Water</td>
<td>Japan</td>
<td>32</td>
<td>7000</td>
<td>Running</td>
</tr>
<tr>
<td>LVD</td>
<td>Scintillator</td>
<td>Italy</td>
<td>1</td>
<td>300</td>
<td>Running</td>
</tr>
<tr>
<td>KamLAND</td>
<td>Scintillator</td>
<td>Japan</td>
<td>1</td>
<td>300</td>
<td>Running</td>
</tr>
<tr>
<td>SNO+</td>
<td>Scintillator</td>
<td>Canada</td>
<td>1</td>
<td>300</td>
<td>Commissioning 2013</td>
</tr>
<tr>
<td>MiniBOONE</td>
<td>Scintillator</td>
<td>USA</td>
<td>0.7</td>
<td>200</td>
<td>Running</td>
</tr>
<tr>
<td>Daya Bay</td>
<td>Scintillator</td>
<td>China</td>
<td>0.32</td>
<td>100</td>
<td>Running</td>
</tr>
<tr>
<td>Borexino</td>
<td>Scintillator</td>
<td>Italy</td>
<td>0.3</td>
<td>80</td>
<td>Running</td>
</tr>
<tr>
<td>BST</td>
<td>Scintillator</td>
<td>Russia</td>
<td>0.2</td>
<td>50</td>
<td>Running</td>
</tr>
<tr>
<td>HALO</td>
<td>Lead</td>
<td>Canada</td>
<td>0.079</td>
<td>tens</td>
<td>Almost ready</td>
</tr>
<tr>
<td>ICARUS</td>
<td>Liquid argon</td>
<td>Italy</td>
<td>0.6</td>
<td>200</td>
<td>Running</td>
</tr>
</tbody>
</table>

*Data from George G. Raffelt, *Neutrinos and the Stars*, arXiv: 1201.1637v2*
Supernova Online Trigger in DYB

- Better Energy Resolution: ~3% @10MeV
- Time accuracy: **GPS < 200ns**
- Energy Threshold: 0.7MeV (2MeV)
- Time latency: ~10s
- **8AD deployment in 3 experiment sites 1km apart from each other**
 - Better rejection to the [muon-induced fast neutron background] than one single detector
 - Increase Signal-to-Background ratio, thus increase sensitivity of SN explosion
Compared with SK

<table>
<thead>
<tr>
<th></th>
<th>Daya Bay</th>
<th>Super-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Mass</td>
<td>0.32 kt</td>
<td>22.5 kt; other experiments the same magnitude; the fourth L.S. in the world and increase 10.6%</td>
</tr>
<tr>
<td>Energy Resolution</td>
<td>0.3 MeV @10 MeV</td>
<td>1.6 MeV@10 MeV</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.7 (2) MeV</td>
<td>10 MeV</td>
</tr>
<tr>
<td>Powerful Bkg rejection</td>
<td>8 AD deploying in three sites</td>
<td>Other experiment one module or in the same site</td>
</tr>
<tr>
<td>Latency</td>
<td>~10s</td>
<td>need complicated reconstruction (exclude spallation neutron) >5min</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100% to 20kpc</td>
<td>100% to 100kpc</td>
</tr>
<tr>
<td>Pointing</td>
<td>no</td>
<td>SuperK yes</td>
</tr>
</tbody>
</table>
Daya Bay is **online** looking for increases in multi-AD signals in a 10s-time-window with **low latency**.
An IBD selection program embedded into DAQ

- Trigger latency ~1s
- Access to all unpacked raw data
- Timestamp from GPS

Selection

- Simple reconstruction (is different from common offline)
- Selection cut (optimized using offline reconstructed data)
- Send IBD candidates to IS (information service of DAQ) server promptly

Criteria for selection:
1. Simple
2. Low single AD trigger rate
3. High efficiency for SNv
Selection Result

Selection Cut:
1. Muon Veto
2. Prompt-Delayed Distance
3. Time coincidence
4. PMT Flasher
5. Energy cut

Gd neutron capture

Acc coincident background

H neutron capture

with all cuts

w/o energy cut

AD trigger rate:
(Near site) DYB ~0.015Hz LA ~0.012Hz
FAR ~0.0012Hz
Single AD SN$_\nu$ Selection Efficiency

GdLS

Single AD SN$_\nu$ efficiency: ~70%

LS

\[f_\nu(E) \propto E^\alpha e^{-\frac{(\alpha+1)}{E_{av}}} \]

Online Combination and Judgement

1. Cache each AD’s IBD selection to supernova trigger server
 - Count the events within 1s for each AD labelled with timestamp
2. Combine all ADs’ event counts
 - Every 1s sum up the event counts in the previous 10s for each AD
 - Form a **combination case** of the event counts in the same 10s of all ADs
3. Judge the supernova trigger
 - Set supernova trigger cut: sets false trigger rate
 - Judge combination case against supernova trigger cut

Trigger Table: combination cases ordered by trigger rate
Trigger Table & Trigger Cut

- Study potential background to supernova triggers
- List of combination cases ordered by trigger rate for sliding 10 seconds

Dataset: All 6-AD data (Dec. 24, 2011 ~ Jul. 28, 2012)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1</td>
<td>AD2</td>
<td>AD3</td>
<td>AD4</td>
<td>AD5</td>
<td>AD6</td>
<td>SUM</td>
<td>COUNT</td>
<td>RATE(Hz)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10325376</td>
<td>0.63131593</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1561089</td>
<td>0.09544837</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1552738</td>
<td>0.09493778</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1234517</td>
<td>0.07548105</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>239280</td>
<td>0.0146301</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>188711</td>
<td>0.0115382</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>186826</td>
<td>0.01142295</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>131401</td>
<td>0.00803414</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>130820</td>
<td>0.00799862</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>128114</td>
<td>0.00783317</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>120530</td>
<td>0.00736947</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>117117</td>
<td>0.00716079</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>75527</td>
<td>0.00461788</td>
<td></td>
</tr>
</tbody>
</table>

DYB near site: ~0.015Hz
LA near site: ~0.012Hz
Far site: ~0.0012Hz

A descending order

Combination case 1-0-1-0-0-0 means 10s counts from AD1 to AD6

This cut: 1 - 0.897 = 0.103Hz
~1/10s
Illustration for Trigger Table & Trigger Cut

1. Enumeration and re-order by probability

2. Set the cut

PDF

1 - Accumulated Probability

P-value like

Trigger Cut e.g. 1/year

Combination

Combination
Illustration for Trigger Table & Trigger Cut

1. Enumeration and re-order probability

Fast neutron suppressed here: Low prob for coincidences in multi-ADs apart

2. Set the cut

- pdf
- P-value like
- Trigger Cut e.g. 1/year
Correlation between ADs

- Advantage of using trigger table instead of theoretical prediction
 - Correlation between ADs
 - Real data, real background

<table>
<thead>
<tr>
<th>Correlation</th>
<th>AD1</th>
<th>AD2</th>
<th>AD3</th>
<th>AD4</th>
<th>AD5</th>
<th>AD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD1</td>
<td>1</td>
<td>0.0027</td>
<td>0.0007</td>
<td>-0.0003</td>
<td>-0.0002</td>
<td>0.0002</td>
</tr>
<tr>
<td>AD2</td>
<td>-</td>
<td>1</td>
<td>0.0007</td>
<td>-0.0004</td>
<td>0.0003</td>
<td>-0.0002</td>
</tr>
<tr>
<td>AD3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
</tr>
<tr>
<td>AD4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.0009</td>
<td>0.0007</td>
</tr>
<tr>
<td>AD5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0.0011</td>
</tr>
<tr>
<td>AD6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Main reason for the correlation: The muon gets through the detectors in one site and induces fast neutron in the path.
Test Run Result

- Data Quality Check: Good
- Time consumption:
 - <0.4% of total livetime
 - No block
- Based on previous half year data, the supernova trigger table made a good prediction on false alarm rate.

Based on trigger table:

Silent trigger threshold set to 0.373 Hz ± 0.030Hz
Golden trigger threshold set to 0.102 Hz ± 0.014Hz

Real online trigger rate:
 Silent: 0.345 Hz
 Golden: 0.120 Hz

Real offline trigger rate:
 Silent: 0.410Hz
 Golden: 0.090Hz

Due to different reconstruction methods online and offline
Online Sensitivity

- Expected SN\(\nu\) events (SN1987A-type)
 \[
 F_{\bar{\nu}_e} = 2.18 \times 10^{11} \text{cm}^{-2} \frac{L_{\bar{\nu}_e}}{5 \times 10^{52} \text{erg}} \frac{12 \text{MeV}}{E_{av}} \left(\frac{10 \text{kpc}}{D}\right)^2
 \]

- Within 10 seconds \(~98\%\) events

- Single AD efficiency to SN\(\nu\) \(~70\%\)

- **Trigger Cut**
 - Determined by trigger table
 - Background trigger rate < 1/120 days

- Each combination case trigger rate of SN
 - Assuming AD mutually independent
 - Poisson distribution
 - Neglecting relative AD differences <1\%
Sensitivity Calculation

- Locate the background in the coordinate axis as before
- For each combination display the SN explosion trigger rate
- Beyond the cut will cause a trigger
 - Sum the probability to get the sensitivity

The sensitivity here is for online supernova early warning system in Daya Bay, not for offline analysis.
Result

Sensitivity for 1987A-type SN

- **6AD**
- **8AD prediction**
- **Target Mass Only**

Galaxy Center (~8.5 kpc)
Milky Way Edge (<24 kpc)

90% sensitivity ~ $3.6 \times 10^{-50} \text{ kpc}^2/\text{kt} \cdot \text{Erg}$

Independent variable

Sensitivity function
Detector $(M \times L/D^2)$

Detector factor: selection cut, efficiency, background, trigger strategy ...

6AD: multi-AD result
Target Mass Only: Put AD together and just consider the event summation (like one detector with 6-AD target mass)

Same trigger cut
Offline Part

- Sending supernova trigger info outside via DIM mechanism to a DIM client
- Alert to SNEWS by mail application
- Auto-write into database
- Regular PQM (Performance Quality Monitoring) cross check

- Coming test run to validate the entire design
Summary

- Daya Bay Reactor Neutrino Experiment has advantages on supernova online trigger
 - Better energy resolution
 - Time accuracy
 - Low energy threshold
 - Low time latency
 - Background suppress with 8AD deployed in 3 sites
- ~100% sensitivity to Galaxy center and ~90% to Milky Way edge with 6-AD data, 8-AD adds ~8% to Milky Way edge.
- Test run preliminarily implies the Daya Bay’s supernova online trigger works.
- Daya Bay officially in SNEWS in near future.
Thank you for your attention.