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CERN and the LHC
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Two beams of protons circulating 
in opposite directions, traveling at 

99.99% of the speed of light.

27km long tunnel, 
100m underground.

Beams collide 
40 million times 

per second

200 billion 
protons per 

bunch.

 3000 
`bunches’ of 
protons per 

beam.

Beam is controlled by 1800 
superconducting magnets 
(8T) operating at 1.9 K.
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The ATLAS Detector
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Diameter = 25m
Length = 45m

Weight = 7000 tonnes
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The ATLAS Detector
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Data Events
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Z→ µµ event 
+ 24 other p-p 

interactions
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Pixel Detector

Beampipe

• Innermost layer of ATLAS detector.

• Provides precision measurements of positions 
of charged particles.

• Crucial for identification of long-lived particles 
via reconstruction of secondary vertices and 
estimate of number of proton-proton 
interactions per bunch crossing.

• 1744 identical modules.

• 46080 silicon pixel sensors per module.
‣ Thickness: 250 µm
‣ Transverse length: 50 µm
‣ Longitudinal length: 400 µm

• Total of 80.8 million read-out channels.

Katharine Leney 616th May 2013
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Tracking Overview

Track Pattern Recognition

• Start with blue “seeds” from 
3 space point hits in silicon

• Use seed to build track 
candidate from inside out

• Use ambiguity solver to 
keep only most probable 
tracks

• Silicon track candidate 
connected to TRT extension

Track Fitting

• Fit track trajectory to 
collection of hits in track

16th May 2013
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Standard Clustering

16th May 2013

• Particle traversing detector typically 
deposits charge in more than one 
pixel.

• Charge deposited in a pixel measured 
using pulse-height time-over-
threshold. 

• Pixels with deposited charge are 
grouped into clusters if they have a 
common edge or a common corner.

• Position of crossing is computed from 
the signal heights inside the cluster of 
pixels:
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Cylinders and discs are constructed from a total number of 1744 identical modules, with each containing69

46080 individual pixels connected to 16 front-end chips. The modules are arranged such that the pixel70

segmentation defines a transverse measuring direction in the bending plane of the solenoidal field, the φ71

or local x direction, and a longitudinal direction aligned with the beam line, also referred to as η or local72

y direction.73

A typical pixel is 50 µm in the transverse and 400 µm in the longitudinal measurement directions74

respectively. At the overlap between the individual read-out chips, the longitudinal pixel size is 600 µm;75

they are referred to as long pixels. The silicon sensor thickness is 250 µm and the entire pixel system has76

80.8 million readout channels in total, where each individual pixel is read out if the amount of charged77

deposited in that pixel exceeds a tuneable threshold.78

A measurement of the charge deposited in a pixel is obtained by measuring the pulse height using the79

time-over-threshold (ToT). When a charged particle traverses a pixel sensor, charge is typically deposited80

in more than one pixel. This is simply due to the incident angle of the charged particles with respect to81

the silicon modules. Therefore, a connected component analysis (CCA) [?] is used to find the group82

of pixels that cluster together requiring at minimum one common corner. This is referred to as 8-cell83

connectivity, because a single pixel can be connected to at most 8 cells. The average cluster size created84

by particles originating from the beam collision in the momentum range of interest varies between 1.4 to85

3 pixels in the transverse, and between 1 and roughly 3.5 pixels in the longitudinal direction, depending86

on the incident angle of the particle with the silicon module.87

The ToT values of the pixels in the cluster are used to refine the estimate of the particle intersection88

using a charge interpolation technique, which significantly improves the resolution with respect to the89

geometrical limit determined by the pixel pitch. This technique starts from the geometrical center of90

the cluster, defined as (xcenter,ycenter) in the local reference frame x-y of the sensor surface, and uses91

the charge in the first and last rows (columns) of the pixels to perform the interpolation. The particle92

intersection is then estimated by using the following equations:93

xcs = xcenter +∆x ·
�

Ωx −
1

2

�
(1)

ycs = ycenter +∆y ·
�

Ωy −
1

2

�
, (2)

where the parameters Ωx(y) are defined as94

Ωx(y) =
qlast row(col)

qfirst row(col) +qlast row(col)
.

The parameter ∆x (∆y) is parametrised as a function of the incidence angle in φ (θ ) of the track with95

respect to the pixel module and the number of pixels within the clusters in the x (y) axis direction.96

These parameters are extracted from either Monte Carlo simulations or data[?].The charge interpolation97

technique has been the default ATLAS clustering approach until the end of 2011 and will be further98

referred to as standard clustering.99

In very dense environments there exists an increased risk that pixels traversed by different particles100

are merged by the CCA, or even charge induced by several particles is deposited in one single pixel. This101

is illustrated in Fig. 1 which sketches an event in which the charged deposited by three particles is recon-102

structed as a single cluster. This problem occurs more and more often as the spatial separation between103

the particles at the measurement position approaches the pixel size. Figure 2 shows the minimum average104

transverse and longitudinal separation of stable charged particles for jets with a jet energy of E > 800105

GeV at the radius of the innermost ATLAS pixel layer as predicted by the PYTHIA [?] event generator.106

This intrinsic geometrical limit is often referred to as double track resolution. As a consequence, merged107

clusters appear as shared measurements on track candidates, since the assignment becomes ambiguous.108
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Tracking in Dense Environments

16th May 2013

Jets with transverse 
momentum > 1 TeV typically 

produce merged clusters.

• Standard clustering provides excellent resolution for most clusters.

• Inadequate for dense environments with multiple charged particles:
‣ Charge deposited in neighbouring pixels.
‣ Clusters are shared.
‣ Track parameters are mis-estimated.

• Objects such as highly energetic jets 
and hadronically decaying tau 
leptons are most affected.
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Tracking in Dense Environments

16th May 2013

More energetic jets → more tracks in core.
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Tracking in Dense Environments

16th May 2013

Most energetic tracks in jet core.
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Tracking in Dense Environments

16th May 2013

Tracks in core have fewer hits associated to them.
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Tracking in Dense Environments

16th May 2013

Energetic tracks in jet core share more hits with neighbouring tracks.
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Neural Networks

16th May 2013

• Powerful tools for pattern recognition 
problems.

• Can handle non-linear correlations 
between input variables.

• Attractive for problems with many 
degrees-of-freedom.

• Inputs are differently weighted in the 
hidden layers of the NN to finally 
determine the output.

Good choice for pixel clustering algorithm:

• Many cluster properties are nearly meaningless when alone (e.g. charge of a single pixel).

• Combine cluster properties to put into context (e.g. knowing charges of adjacent pixels).

• Variables then contain all information required for successful pattern recognition. 
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Neural Network Cluster Splitter

Neural networks used to compute:
• Number of particles per cluster.
• Cluster position and error.

Feed-forward multi-layer 
perceptron network:

April 3, 2013 – 11 : 24 DRAFT 5

3 Pixel Cluster Splitting111

Splitting clusters that stem from several charged particles into sub-components that represent the indi-112

vudal contributions is one way to improve the double-track resolution and reduce the number of shared113

measurements between tracks. However, even identifying such merged clusters without performing any114

splitting can lead to an improvement of the track quality because they can be treated separately in the115

hit calibration or ambiguity solving process. Ambiguity solving is a dedicated step in the ATLAS track116

reconstruction when shared hits are identified and different assignment possibilities are tested. The track117

ensemble is then optimised using a scoring schema that takes the hit content, the shared hits and holes,118

such as the fit quality of the individual track candidates into account and ranks them according to their119

achieved score.120

Ideally, however, the initially merged clusters found by the CCA technique can be correctly split into121

its sub-components that reflect the pixel groups associated to the different particles that contributed to122

the overall pixel compound. In this case, the original cluster can be dropped and the split components123

used as input to the pattern recognition. A correct splitting of merged clusters before pattern recognition124

increases the chance of finding close-by tracks while still using stringent requirements on shared hits and125

holes to suppress fakes and duplicate tracks.126

Both cluster size and the charge deposition pattern within the cluster can be exploited in performing127

the split. Assumptions about the particle origin and direction are required to determine the predicted128

cluster shape and the charge deposition in the material. Previously, a classical cluster splitting approach129

based on the charge deposition patterns in the transverse and longitudinal direction, respectively, was130

deployed by the track reconstruction of the CDF experiment [?].131

Here we present a novel, more progressive approach based on a set of neural networks (NN) to132

estimate the probability of a cluster being created by one or many particles and split the cluster when133

possible. The NN based algorithm also improves both cluster position estimation and hence track reso-134

lution.135

3.1 Neural networks in the Context of Cluster Reconstruction136

Artificial neural networks are powerful tools to solve complex pattern recognition problems characterised137

by significant non-linearities. The increasing CPU power available for event reconstruction in high-138

energy physics make them increasingly attractive for problems with many degrees of freedom. We use a139

feed-forward multilayer perceptron network, with input nodes (variables) xk (k =
�
0,Ninputs

�
) and output140

nodes Fi, corresponding to a function which, in the case of a single intermediate hidden layer, can be141

written down as:142

Fi (�x) = h

�

∑
j

ωi jg

�

∑
k

ω jkxk +θ j

�
+θi

�
, (3)

where ω and θ are the weight and threshold parameters of the network, which are adjusted during143

the training process, and g(x) and h(x) are the activation functions for computing the values of the144

intermediate and output nodes, which are conventionally chosen to be:145

g(x) =
�
1+ exp

−2x�−1

. (4)

Such a choice means that the output nodes are naturally confined between 0 and 1. All networks are146

trained based using the JetNet package[?]. This minimises the sum of the mean square of the errors of147

the network output nodes with respect to their target values, which are summed over all patterns of the148

training set. In classification the number of output nodes is chosen to be equal to the number of possible149

choices, with the i-th choice coded with targets {00...1i−th...00}. This ensures that the output nodes Fi150

weight parameters threshold parameters

input nodes/variables
(k = [0, Ninputs] 

output 
nodes

activation functions 
for computing values 
of intermediate and 

output nodes 
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can be interpreted as the posterior Bayes probabilities for a pattern with inputs�x to be of the type i when151

the global minimum is found.152

In addition to classification, the neural networks are used to interpolate, i.e. to obtain a function153

where the outputs get as close as possible to one or more continuous target values by exploiting the154

dependence of such targets on the input variables. The procedure is almost identical to the previous case,155

but linear functions are chosen for the output nodes (h(x) = x), such that the outputs are not confined156

anymore between 0 and 1, and the targets are set pattern by pattern to the desired values.157

3.2 Neural Network Implementation of a Cluster Splitting Algorithm158

In the first step of the track reconstruction sequence clusters are created using a CCA technique. The NN159

algorithm runs over all created clusters found by the CCA and performs:160

1. an estimation of the number N of charged particles traversing the cluster161

2. an estimation of the two-dimensional �Pi (with i = 1,N) positions and uncertainties of the impact162

points of the particles on the pixel sensor163

Only clusters with less than 7 x 7 pixels are included. This is well beyond the geometrical limit of164

expectations for primary and secondary particles in the momentum range of interest.165

No attempt is made to assign single pixels within a cluster to a specific particle, because the clusters166

are the important quantities for track reconstruction. Particles are initially assumed to have been produced167

at the estimated beam spot position. The beam spot is the centre of the luminous region of the beam-beam168

interaction, which is estimated using the primary vertices of collisions prior to the current interaction.169

The incident angle of the particles is calculated by a straight line connecting the beam spot to the cluster170

position. Then, once track candidates have been identified, the approach is repeated profiting from the171

more refined estimate of the incidence angle of the track to the module. This is possible because the172

ATLAS track reconstruction strategy allows for re-calibration of measurements once they are assigned173

to a track candidate.174

Number of particles per cluster The number of particles in a cluster, N, is estimated using a neural175

network dedicated to classification, NNpar, with a number of output nodes equal to N. Three output176

nodes are used, which correspond to one, two or three particles per cluster. The Bayesian probabilistic177

interpretation of the outputs Fi mentioned in Sec. 3.1 relies on both the description of observed cluster178

properties and the composition of the training sample.179

Classically, the candidate cluster properties would be condensed into a few input variables to the180

NN, which would then be trained to distinguish between the different output types. Instead, a more181

aggressive approach is followed here by feeding the neural network input nodes xk with the full available182

information:183

• a fixed-size matrix of 7 x 7 pixels of the charge deposited in each pixel of the candidate cluster184

• a vector with the longitudinal size of the pixels in the matrix of charge used to identify long pixels,185

and186

• the direction of the candidate charged particles traversing the candidate cluster187

In total, this corresponds to 60 input nodes. If a pixel in the matrix has no energy above threshold,188

the matrix entry is set to zero. The cluster is centred in the matrix according to the position charged189

weighted centroid of the cluster.190
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Number of Particles Per Cluster

16th May 2013

7x7 pixel matrix 
of collected 

charge of each 
pixel

Vector of 
longitudinal size 
of pixels in the 

matrix

Direction of the 
candidate 

charged particles 
traversing the 

cluster

One particle 
per cluster

Two particles 
per cluster

Three particles 
per cluster

60 input nodes 3 output nodes

Hidden layer 
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Cluster Position & Error

16th May 2013

Additional set of neural networks used to estimate:

Cluster position:

• Configured for interpolation. 
‣ Obtain a function where outputs get as close as possible to one or more 

continuous target variables.
‣ Exploit dependence of such targets on the input variables.

• Different neural networks for different number of particles scenarios.
‣ Trained on true number of particles in simulation.

• Same input variables as for classification neural network.

Probability density function for residual of estimated impact point:

• ΔP = P - Ptrue

• Separate neural networks for transverse and longitudinal directions.
• Translated to the cluster rest frame.

→ → →
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Training

16th May 2013

• Ten neural networks needed for up to three sub-clusters:

Number of charged 
particles traversing  

cluster

Particle 1 position Particle 2 position Particle 3 position

Number of charged 
particles traversing  

cluster
Particle 1 x-error Particle 2 x-error Particle 3 x-error

Number of charged 
particles traversing  

cluster

Particle 1 y-error Particle 2 y-error Particle 3 y-error

• Trained on simulations of pair produced top-quarks, and highly energetic di-jet 
events.

• Simulations divided into test samples and training samples.

‣ Number of training patterns exceeds number of network parameter by at least 
1000.
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Cluster Splitting

16th May 2013

April 3, 2013 – 11 : 24 DRAFT 9

 [mm]
-13.4 -13.2 -13 -12.8 -12.6 -12.4 -12.2 -12 -11.8

 [m
m

]

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

0

5

10

15

20

25

p(N=1): 0.168         p(N=2): 0.629          p(N>2): 0.203

ch
ar

ge
 [k

e]

Figure 3: Example for a merged cluster created by two particles using Monte Carlo simulation. The two
arrows show the paths of the particles through the silicon, the centre boxes indicate the true intersection
with the mid-sensor plane. The black dot illustrates the non-split cluster position, while the two stars
show the estimated cluster positions after splitting. The circles indicate the according error estimates,
and p(N = i) denote the probabilities for the cluster to be created by i particles as estimated by the
neural network. Effects caused by the Lorentz angle drift in the silicon sensor have been removed in this
illustration.
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Figure 4: Dependence of the fraction of incorrectly split 1-particle clusters on the fraction of wrongly
split 2-particle clusters in simulation. The distribution is shown both for the NN using only the cluster
information and for the NN also including the track information.

two close-by particles, which results in a double peak structure reflecting the 50 µm pitch size in the283

transverse plane of the ATLAS pixel sensor layout. This double peak structure is completely resolved284

when running the NN based clustering.285

4.1 Performance in Data and Simulation286

As the NN was trained using simulated data, it is vital to demonstrate similar performance in data. The287

charge deposition pattern after the readout conversion from ToT is the main input of the NN training.288

Because of this the performance on data very much depends on how well the interaction of the particle289

with the silicon, and the signal collection is modelled by the detector simulation and digitization. Figure 6290

compares the hit residuals in data and simulation in the transverse φ and longitudinal η direction for both291

Non-split cluster position Cluster positions after splitting

True intersection with mid-plane True direction of particles 
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Split Clusters

16th May 2013
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Two-Particle Separation

16th May 2013

• Track is allowed to share a pixel cluster with another track only if cluster is not 
already split, and the neural network output is compatible with a possible merged 
cluster.

• Most noticeable 
improvements in 
innermost layer of 
pixel detector     
(b-layer) where 
particle density is 
highest.

• Ambiguities 
reduced by order 
of magnitude 
when using neural 
network.
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Cluster Resolution

16th May 2013

• Dramatic improvement in resolution (track-to-measurement residual).

• Non-linear treatment of charge resolution allows recovery of single peak 
in track-to-hit residuals. 



23Katharine Leney

Track Resolution

16th May 2013

• Improved cluster resolution 
leads to improved track 
parameters.

• 15% improvement in 
longitudinal impact 
parameter.
‣ Used for identification of 

long-lived particles (e.g. 
heavy flavour quarks).
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Summary 

16th May 2013

• Neural network approach used to boost detector performance and make full 
use of detector design potential.

• All correlations inside pixel cluster are taken into account.

• Identify and split merged clusters created by multiple charged particles.

• Sizeable improvement in track measurements, particularly in dense 
environments such as in jet cores and hadronic tau decays.

• Non-linear treatment of charge collection improves impact parameter 
resolution even for isolated tracks.

• Improved two-particle separation will become even more important during 
future upgrades as particle density increases.
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The ATLAS Detector
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How much is an eV?
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1 eV = (1.602 x 10–19 C) x (1 V) = 1.602 x 10–19 J.

A single electron accelerated by a potential difference of 1 volt will have a 
discreet amount of energy, E=qV joules, where q is the charge on the electron in 

coulombs and V is the potential difference in volts. 

103 k (kilo)

106 M (mega)

109 G (giga)

1012 T (tera)



Semi-Conductor Trackers

•  In a semi-conductor, the gap 
between the valence band and 
conduction band is less than 1GeV.

•  When high energy particle hits semi-
conductor, some of the energy is 
absorbed by electrons which are 
then promoted to the conduction 
band.

•  Number of charge carriers (both 
electrons and holes) is increased, 
and so resistance decreases.
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Cluster Shapes
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Neural network based cluster creation in the 
ATLAS Pixel Detector

A. Andreazza1 on behalf of the ATLAS Collaboration
1 INFN and Università degli Studi di Milano, Milano, Italy

PIXEL2012 - International Workshop on Semiconductor Pixel Detectors for Particles and Imaging
Inawashiro, Japan, 3-7 September, 2012

The standard approach: charge sharing Cluster shapes

Introduction
• Particles crossing the Pixel Detector often release charge in more than one pixel:

position of crossing is computed from the signal heights inside the cluster of pixels.
• A neural network is implemented to make full use of the 2D distribution of the read-out signals.
• This results in significant improvements in position resolution and two-particle separation:

especially relevant for particles the very dense core of high energy jets at the LHC.

Cluster reconstruction is usually performed 
interpolating the collected charge.
• Independent projections on the two pixel 

coordinates.
• Charge sharing variables:

• Position correction:

• ! values calibrated on data

The neural network approach

Two near particles Two very near particles

Hadronic interaction !-ray emission

Three overlapping particlestruth particle crossing point and 
projection of path in silicon
cluster position and uncertainty 
with linear interpolation
track extrapolation
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Resolution is excellent for most clusters:
• the algorithm reflects the approximately 
uniform charge generation along the path of 
the particle in silicon

But the procedure is not always adequate:
• nearby particles giving origin 
to merged clusters

• interaction with the material resulting 
in large clusters

Performance

To achieve better performance all 
the detector information needs to be 
used:
• the signal of each pixel
• the detailed cluster shape 

A set of neural networks is trained to 
compute:

• the probability a cluster is due 
multiple nearby particles;

• the (multiple) crossing position during 
pattern recognition

• an improved crossing position during 
track fit

• estimate the position uncertainty

Neural networks inputs:
• a 7"7 pixel matrix, containing the collected charge of each pixel
• the pixels dimensions (y-pitch can be 400 or 600 µm)
• estimated direction of incoming particle:
- from module position during pattern recognition
- from track extrapolation in final track fit

A single hidden layer.
Training on simulated     and high pT di-jet events (140 < jet pT < 560 GeV).tt̄

A dramatic improvement in resolution is 
visible on moderately sized clusters.

• These clusters are mainly due to #-ray 
production.

• The NN recognizes the non uniform 
distribution of the collected charge.

• Thanks to the non-linear treatment of the 
charge distribution a single-peak in track-
to-hit residuals is recovered

Cluster resolution

Summary and perspectives
• The NN approach makes full use of the ATLAS Pixel Detector potential.
• It boosts the detector performance beyond the original design by 
taking into account all correlations inside a pixel cluster:

2D > 1D + 1D
• The improved two-particle separation will become more and more 
important with future upgrades where particle density will increase:
• LHC reaching the design luminosity 1034 cm-2s-1 and $s=14 TeV, 
• the installation of IBL, a new pixel layer at 33 mm from the beam.

Reconstructing the position of multiple 
particles in the same clusters reduces 
ambiguities in track reconstruction.

• Clusters that cannot uniquely associate to 
a track (shared clusters) are frequent in the 
innermost pixel layer, where the particle 
density is highest.

• The NN approach reduces these 
ambiguities by an order of magnitude.

Two-particle separation

Improved cluster reconstruction directly 
results in an improvement of track 
parameters.

• Resolution on the impact parameters for 
high-pT tracks improves by 15%. 

• This is the main ingredient for algorithms 
used to separare heavy flavours from 
prompt particles from pp collisions.

Track resolution

(*) Pixels are shifted relative to the particle 
crossing point because of the Lorentz drift.This 
is corrected in the track reconstruction.

Neural network based cluster creation in the 
ATLAS Pixel Detector

A. Andreazza1 on behalf of the ATLAS Collaboration
1 INFN and Università degli Studi di Milano, Milano, Italy
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Inawashiro, Japan, 3-7 September, 2012

The standard approach: charge sharing Cluster shapes

Introduction
• Particles crossing the Pixel Detector often release charge in more than one pixel:

position of crossing is computed from the signal heights inside the cluster of pixels.
• A neural network is implemented to make full use of the 2D distribution of the read-out signals.
• This results in significant improvements in position resolution and two-particle separation:

especially relevant for particles the very dense core of high energy jets at the LHC.

Cluster reconstruction is usually performed 
interpolating the collected charge.
• Independent projections on the two pixel 

coordinates.
• Charge sharing variables:

• Position correction:

• ! values calibrated on data
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Resolution is excellent for most clusters:
• the algorithm reflects the approximately 
uniform charge generation along the path of 
the particle in silicon

But the procedure is not always adequate:
• nearby particles giving origin 
to merged clusters

• interaction with the material resulting 
in large clusters

Performance

To achieve better performance all 
the detector information needs to be 
used:
• the signal of each pixel
• the detailed cluster shape 

A set of neural networks is trained to 
compute:

• the probability a cluster is due 
multiple nearby particles;

• the (multiple) crossing position during 
pattern recognition

• an improved crossing position during 
track fit

• estimate the position uncertainty

Neural networks inputs:
• a 7"7 pixel matrix, containing the collected charge of each pixel
• the pixels dimensions (y-pitch can be 400 or 600 µm)
• estimated direction of incoming particle:
- from module position during pattern recognition
- from track extrapolation in final track fit

A single hidden layer.
Training on simulated     and high pT di-jet events (140 < jet pT < 560 GeV).tt̄

A dramatic improvement in resolution is 
visible on moderately sized clusters.

• These clusters are mainly due to #-ray 
production.

• The NN recognizes the non uniform 
distribution of the collected charge.

• Thanks to the non-linear treatment of the 
charge distribution a single-peak in track-
to-hit residuals is recovered

Cluster resolution

Summary and perspectives
• The NN approach makes full use of the ATLAS Pixel Detector potential.
• It boosts the detector performance beyond the original design by 
taking into account all correlations inside a pixel cluster:

2D > 1D + 1D
• The improved two-particle separation will become more and more 
important with future upgrades where particle density will increase:
• LHC reaching the design luminosity 1034 cm-2s-1 and $s=14 TeV, 
• the installation of IBL, a new pixel layer at 33 mm from the beam.

Reconstructing the position of multiple 
particles in the same clusters reduces 
ambiguities in track reconstruction.

• Clusters that cannot uniquely associate to 
a track (shared clusters) are frequent in the 
innermost pixel layer, where the particle 
density is highest.

• The NN approach reduces these 
ambiguities by an order of magnitude.

Two-particle separation

Improved cluster reconstruction directly 
results in an improvement of track 
parameters.

• Resolution on the impact parameters for 
high-pT tracks improves by 15%. 

• This is the main ingredient for algorithms 
used to separare heavy flavours from 
prompt particles from pp collisions.

Track resolution

(*) Pixels are shifted relative to the particle 
crossing point because of the Lorentz drift.This 
is corrected in the track reconstruction.

Two very close particles

Three overlapping particles
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We present a novel technique using a set of artificial neural networks to identify 
and split merged measurements created by multiple charged particles in the 
ATLAS pixel detector. Such merged measurements are a common feature of 
boosted physics objects such as tau leptons or strongly energetic jets where 
particles get highly collimated. The neural networks are trained using Monte 

Carlo samples produced with a detailed detector simulation.

The performance of the splitting technique is quantified using LHC data 
collected by the ATLAS detector in 2011 and Monte Carlo simulation. The 

number of shared hits per track is significantly reduced, particularly in boosted 
systems, which increases the reconstruction efficiency and quality. The improved 
position and error estimates of the measurements lead to a sizable improvement 

of the track and vertex resolution.

16th May 2013
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CPU Performance of NN Clusterisation 

16th May 2013

• Neural network clustering runs 6 times slower than traditional clustering.

• In context of the full event reconstruction, the re-evaluation of the splitting 
during track fitting and the increased combinatorics from additionally found 
track candidates leads at maximum to a 5% increase of the per event execution 
time in the highest pile-up conditions experienced during the 2012 data taking.


