
Optimizing the ATLAS code with different profilers

Sami Kama1

on behalf of the ATLAS Collaboration2

1Southern Methodist University, Texas

2https://cdsweb.cern.ch/record/1386334

Advanced Computing and Analysis Techniques in Physics,
Beijing/China, May 2013

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 1 / 18



Introduction

Large Hadron Collider

Located at CERN near Geneva
27 km circumference and
∼100 m below surface
It is operational since 2010.
There are 4 detectors located on
it, ATLAS is one of two large
general purpose detectors
It is shutdown for two years for
upgrades and maintenance on
March 2013
It will operate at higher beam
energy and higher luminosity
after shutdown

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 2 / 18



Introduction

ATLAS

ATLAS is composed of different co-centric cylindrical detectors of
∼150 M readout channels
It has a three-level trigger system

Level-1 trigger is hardware based and located in the detector. It
reduces 40(20) MHz input rate to 75 kHz
Level 2 and Level 3 are software based triggers running on ∼16k
core pc farm, reducing final event rate to 300(600) Hz at
∼1.6 MB/ev
Trigger will be upgraded to 1 kHz output in 2015

Selected events are stored and processed offline in more detail.
Both offline processing and online selection is done with the same
software using a different configuration
So far ATLAS stored and processed ∼22 PB of raw data.
With the increase in LHC energy, collision rate, event complexity
and trigger output ATLAS software needs to speedup considerably

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 3 / 18



Introduction

ATLAS Software (ATHENA)

Comprised of more than 6 million lines of C++ and Python code
with a small amount of FORTRAN code
Spread over ∼2000 packages
Producing 4k+ libraries of various sizes
Evolving for more than 10 years
Writen by people with various levels of programming knowledge,
some experts, some first timers
Detailed knowledge of packages is frequently lost due to authors
changing topics, institutes or leaving the field.
Configuration is done in Python
64-bit application consumes ∼4 GB memory

big challenge for many profilers

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 4 / 18



Introduction

ATLAS Software (ATHENA)

Comprised of more than 6 million lines of C++ and Python code
with a small amount of FORTRAN code
Spread over ∼2000 packages
Producing 4k+ libraries of various sizes
Evolving for more than 10 years
Writen by people with various levels of programming knowledge,
some experts, some first timers
Detailed knowledge of packages is frequently lost due to authors
changing topics, institutes or leaving the field.
Configuration is done in Python
64-bit application consumes ∼4 GB memory

big challenge for many profilers

Need tools to point out problematic code!
Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 4 / 18



Profiling

Profilers commonly used in ATLAS
ATLAS uses various tools to profile and monitor ATHENA

PerfMon to collect coarse level resource utilization information
from ATHENA instrumentation.
Valgrind suite to check leaks, extract callgraphs and detailed CPU
utilization
GOODA to investigate most detailed CPU utilization
Pin Tools to do detailed code instrumentation to study parameter
ranges
Other tools such as Intel Vtune, PAPI, igprof from CMS, Google
perf tools etc.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 5 / 18



Profiling GOODA

Google Data Analyzer (GOODA)

Open source, developed by a collaboration between ATLAS and
Google
Uses Linux perf tool to configure and collect detailed performance
monitoring unit (PMU) information from hardware monitoring units
inside CPUs
Analyzes the monitoring data and creates spreadsheets that can
be displayed in web browsers.
Gives detailed information about performance bottlenecks

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 6 / 18



Profiling GOODA

GOODA Example

Reports

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 7 / 18



Profiling GOODA

GOODA Example

Processes

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 7 / 18



Profiling GOODA

GOODA Example

Hotspot functions

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 7 / 18



Profiling GOODA

GOODA Example

PMU events, grouped

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 7 / 18



Profiling GOODA

Hottest functions

Tracking code, particularly Runge-Kutta methods
suffering from instruction starvation
mostly composed of vector and matrix operations
Vectorization helps, up to 2.5x speedup from manual vectorization
in certain points is achieved, need vectorized vector math libs

Memory allocation and de-allocation
too many new() and deletes
Event Data Model (EDM) change is underway

Magnetic field code
suffering from load latency and instruction latency
was written in FORTRAN code, several calls deep
re-written in C++, already was about 2x faster than fortran
implementation
C++ code profiled again to optimize further

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 8 / 18



Profiling GOODA

Improving new Magnetic Field
Profiled a special test code that queries the magnetic field code ran-
domly

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 9 / 18



Profiling GOODA

Improving new Magnetic Field
Profiled a special test code that queries the magnetic field code ran-
domly

Expanding instruction latency

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 9 / 18



Profiling GOODA

Improving new Magnetic Field
Profiled a special test code that queries the magnetic field code ran-
domly

Expanding instruction latency

High instruction latency originating from division operations. Can drill
down (double-click) for details

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 9 / 18



Profiling GOODA

Magnetic field code details

Dissasembly window Source window

Detailed view contains both dissassembly and source code if
debug symbols and source files are available
Events are displayed at instruction level and hottest basic block is
automatically highlighted
Debug symbols in optimized builds are skewed, instruction latency
is coming from another file.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 10 / 18



Profiling GOODA

Magnetic field code details

Hotspot basic block is highlighted

Detailed view contains both dissassembly and source code if
debug symbols and source files are available
Events are displayed at instruction level and hottest basic block is
automatically highlighted
Debug symbols in optimized builds are skewed, instruction latency
is coming from another file.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 10 / 18



Profiling GOODA

Magnetic field code details

Detailed view contains both dissassembly and source code if
debug symbols and source files are available
Events are displayed at instruction level and hottest basic block is
automatically highlighted
Debug symbols in optimized builds are skewed, instruction latency
is coming from another file.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 10 / 18



Profiling GOODA

Fixing the problem

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 11 / 18



Profiling GOODA

Fixing the problem

Lots of 1/r , replace with
inverse multiplication

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 11 / 18



Profiling GOODA

Fixing the problem

Lots of 1/r , replace with
inverse multiplication

Dot products of two
vectors!

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 11 / 18



Profiling GOODA

Fixing the problem

Lots of 1/r , replace with
inverse multiplication

Dot products of two
vectors!

40% more speedup after replacement, 5%− 20% global speedup with
new code. Vectorization is yet to come.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 11 / 18



Profiling Pin Tools

Pin Tools

Pin is a dynamic binary instrumentation framework from Intel

instrumentation is done on binary at run-time, eliminates need to
modify or recompile the code
can instrument from instruction level to function level, supports
dynamically generated code
can access function parameters and register contents
can work with threaded programs
has limited access to symbol and debug information
creates a copy of the binary, inspects applications instructions and
inserts calls to analysis functions
used in computer architecture, security, emulation and parallel
program analysis tools such as Intel’s Parallel Inspector, Parallel
Amplifier, Trace Analyzer and Collector, CMP$im and many others
Great documentation and user community (PinHeads)

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 12 / 18



Profiling Pin Tools

Improving Tracking Code

Tracking is mostly based on vector and matrix operations
CLHEP library is used for matrix and vector representations and
operations

CLHEP is not performance optimized and does not vectorize well
It is hard to know from inspecting the code the ratios of different
operations and matrix/vector sizes which happen when processing
real events

Another, vectorized vector math library is required
There are many libraries, which is the best?

Pin is used to instrument CLHEP classes and operations to
extract information on most commonly used objects

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 13 / 18



Profiling Pin Tools

Hottest 10 CLHEP Functions

Calls Instr <instr>/call Call rank Function

1778523 6392431813 3594.24 1439 CLHEP::operator*( CLHEP::HepMatrix const&,
CLHEP::HepSymMatrix const&)

671676353 5988139520 8.92 9 CLHEP::Hep2Vector::operator()(int) const
232093102 5956556656 25.66 27 HepGeom::Transform3D::operator()(int, int) const
285282108 3709057782 13.00 21 CLHEP::Hep3Vector::operator()(int)

15815930 3179001930 201.00 319 CLHEP::HepRotation::rotateAxes( CLHEP::Hep3Vector const&,
CLHEP::Hep3Vector const&, CLHEP::Hep3Vector const&)

20529818 2422518524 118.00 267 HepGeom::Transform3D::inverse() const
31612743 2212258670 69.98 200 CLHEP::HepSymMatrix::HepSymMatrix( CLHEP::HepSymMatrix const&)
28914115 1929106393 66.72 214 CLHEP::HepVector::HepVector(int, int)

51974716 1819115060 35.00 150 HepGeom::operator*( HepGeom::Transform3D const&,
HepGeom::Point3D<double> const&)

27652274 1506352669 54.47 219 CLHEP::HepVector::HepVector( CLHEP::HepVector const&)

In order to determine a suitable replacement, these routines are instru-
mented with Pin and function properties are queried.

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 14 / 18



Profiling Pin Tools

CLHEP Instrumentation

Each hot function is instrumented by its respective analysis routine
These functions analyzed the call parameters for hottest functions
for each call and produced output to futher offline processing
void InstFunc(ADDRINT addr, std::string& msg, par1 v1, par2 v2){
//do stuff
} //analysis code
VOID InstHOOK(RTN rtn,VOID *v){//called for each routine
RTN_Open(rtn);//read the routine from binary
std::string *msg=new std::string;//extra param for analysis func
if (RTN_Name(rtn).compare("<mangledName>") == 0) {

RTN_InsertCall(rtn, IPOINT_BEFORE, (AFUNPTR)InstFunc,
IARG_RETURN_IP,
IARG_PTR, msg,
IARG_FUNCARG_ENTRYPOINT_VALUE, 1,//func param1
IARG_FUNCARG_ENTRYPOINT_VALUE, 2,//func param2
IARG_END);//instrument <mangledName> function

}
}

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 15 / 18



Profiling

Using pin results

From pin instrumentation we observed frequent use of 3x3, 3x5,
5x3 and 5x5 matrices.
This information is used for testing different vector math libraries.
4x4 is 3D rotation(3x3) plus translation and vectorizes better
Eigen performed best and is currently being implemented.

CLHEP Intel MKL S-Matrix Eigen

S
pe

ed
up

 w
rt

. C
LH

E
P

0

2

4

6

8

10

12
Comparison of Math libraries

5×3B×3×5A
4×4B×4×4A

5×5Cα+5×3B×3×5A

Comparison of Math libraries

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 16 / 18



Profiling

Using pin results

From pin instrumentation we observed frequent use of 3x3, 3x5,
5x3 and 5x5 matrices.
This information is used for testing different vector math libraries.
4x4 is 3D rotation(3x3) plus translation and vectorizes better
Eigen performed best and is currently being implemented.

CLHEP Intel MKL S-Matrix Eigen

S
pe

ed
up

 w
rt

. C
LH

E
P

0

2

4

6

8

10

12
Comparison of Math libraries

5×3B×3×5A
4×4B×4×4A

5×5Cα+5×3B×3×5A

Comparison of Math libraries

Eigen is obvious
choice

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 16 / 18



Summary

Summary

ATLAS has successfully identified points to improve in its huge
codebase using profilers such as GOODA and Pin tools
GOODA is an open source, performance profiling tool giving
valuable insight about bottlenecks in the program
Pin is very good at finding out the details of actually executed
code. It makes analysis of large code bases easier
Information gained from Pin enabled us to choose optimal vector
library
Some results are already implemented and improved performance
up to 20%
Studies are ongoing, many more improvements to come

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 17 / 18



Summary

Thank you for your attention

Thanks to

Graeme A. Stewart

Rolf Seuster

Roberto A. Vitillo

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 18 / 18



Backup

References

GOODA home page
Pin homepage

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 1 / 3

http://code.google.com/p/gooda/
http://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool


Backup

ATLAS

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 2 / 3



Backup

Instrumenting CLHEP::HepSymMatrix(const
CLHEP::HepSymMatrix&)

VOID CLHEPHepSymMatrixCopyConst(ADDRINT addr,
std::map<int,uint64_t> &counts,
CLHEP::HepSymMatrix const& par1){

int hash=calcHash(par1.num_row(),par1.num_col());
std::map<int,uint64_t>::iterator it;
if((it=counts.find(hash))==counts.end()){

counts[hash]=1;
}else{

it->second++;
}

}

Sami Kama (Southern Methodist University) Optimizing the ATLAS code with profilers ACAT, May 2013 3 / 3


	Introduction
	Profiling
	GOODA
	Pin Tools
	

	Summary
	Appendix
	Backup


