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Monitoring Information is necessary for System Design, Control,
Optimization, Debugging and Accounting

Computing Models
Modeling & Simulations

Optimization
Algorithms__

~ REAL TIME
Information
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MonALISA: Monitoring Agents in a Large Integrated
Service Architecture

Running 24 X 7 at ~370 Sites F:

Running jobs pe

ACCOU NTING

e g

O Collecting ~ 2 million “persistent” parameters in real-time
@ 80 million “volatile” parameters per day
O Update rate of ~25,000 parameter updates/sec

O The Repositories serves ~10 million user requests per year.
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The MonALISA Architecture

Regional or Global High Level
Services,
Repositories & Clients

Secure and reliable communication
Dynamic load balancing

Scalability & Replication

AAA for Clients

Distributed System for gathering and
analyzing information based on
mobile agents:

Customized aggregation, Triggers,
Actions

Distributed Dynamic
Registration and Discovery-
based on a lease

mechanism and remote events

Fully Distributed System with no Single Point of Failure
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Collecting and Storing Very Large

Amounts of Monitoring Information

CMS

ALICE
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Current Monitoring architecture in ALICE

Cluster
Monitor

AliEn
Job Agent

AliEn
Job Agent

Cluster
Monitor

m—w=  Alerts
-7 : -
Repository ! = . = DTTRTTI
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Trying to find a better way to store and analyze
large sets of monitoring information

Very large amount of monitoring information is currently
collected.

The users want more and more monitoring information,
but is really difficult to analyze all the data we collect.

Deleing older data or keeping only long term mediated
values is not really a solution.

Wavelets seems to provide an effective way to compress

monitoring information and to analyze large, complex time
series data.
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The Fourier Transform

Represents a signal into constituent sinusoids of different frequencies
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However it does not indicate when different frequencies occur
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. THE WAVELET TRANSFORM

Translation
(The time location of the window) Scale

Mother Wavelet

Scaleis generalized local frequency
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Wavelet Time frequency analysis

H

frequency
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Wavelet is Small wave

scale : . .
Means the window function is of finite length

All the used windows are its dilated
or compressed and shifted versions

time

10 losif Legrand 18 May 2013



Wavelet Transform

> Provides the time-frequency S
representation

» Capable of providing the time and 05}
frequency information
simultaneously

» WT was developed to overcome
some resolution related problems
of the STFT

» We pass the time-domain signal
from various highpass and low
pass filters, which filters out either
high frequency or low frequency
portions of the signal. This
procedure is repeated, every time
some portion of the signal
corresponding to some frequencies

being removed from the signal
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Several Wavelet Functions
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Haar Shannon or Sinc Daubechies 4 Daubechies 20

A

Gaussian or Spline Biorthogonal Mexican Hat Corflet
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Discrete Wavelet Transform

Magnitude Response
T T

- Down-
LQW e L sample » Approximation (A)
Filter X
1 Signal
—_—
. Down-
High-Pass
; — Sample :
Filter 2 — Detail (D)
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A single level decomposition puts a
signal through 2 complementary

low-pass and high-pass filters

The output of the low-pass filter gives
the approximation (A) coefficients,
while the high pass filter gives the
detail (D) coefficients
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Traffic M

Network Traffic in USLHC net

CERN Tier0-US Traffic
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Compressing Time Series Data

“Signal Energy”
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Example of Compression for high sampling network
traffic data

oo Sig Energy =70% | [ | Sig Energy = 90%
000 Storagg = 5% so00 n Storage = 10%
5000 - | . s000 |
sl | | | el
so00f | W i {1 2000
AWM Ad (koM
% T o T r %; = 5 - ST
s000 T T T T 5000 T T T T
ol | Sig Energy = 95% | | “ Sig Energy = 98% |
5000 | Storag =18 % | so0o | Storag =42% |
£ 4000 & 4000}
3000 ) 3000 L
2000 2000
Y N,
% : o = o1 .

1
Oh &h

16 losif Legrand 18 Ma);] 35'13 18h 24n



o Self Similarity Structure in the Transformed Space
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Similar data transfers operations that
overlap in the total traffic pattern
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Detecting Clusters in Multiple
Time Series Data Using Wavelets

d Use a multidimensional grid structure onto data space

ad These multidimensional spatial data objects are
represented in an n-dimensional feature space

Q Apply wavelet transform on feature space to find the
dense regions in the feature space

Q Apply wavelet transform multiple times which result in
clusters at different scales from fine to coarse
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Acceding hierarchical clusters
for the site efficiency plot

Number of Classes: 6
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Major Advantages:

» Complexity O(N)

> Detect arbitrary
shaped clusters at
different scales

> Not sensitive to
noise, not sensitive
to input order

18 May 2013



12+

0.8
06
0.4

02

12F

Results for cluster classification for sites
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SUMMARY

The Wavelet transformation is really effective in compressing
monitoring information and preserving details for signals with rapid
variations.

The implementation for DWT is fast and works multi-treaded

The storage mechanism for monitoring information should be
adapted to keep both uncompressed and compressed data.

The wavelet approach is a powerful tool to analyze complex
monitoring information. The time-frequency representation can help
to understand the dynamic of complex systems.

Dedicated modules (agents in the MonALISA system) can be used to
automatically detect unexpected behavior from different systems and
possible to take appropriate actions.

23 losif Legrand 18 May 2013



Monitoring: A listener to the grid orchestra ?
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