Numerical multi-loop calculations with SecDec

Gudrun Heinrich

in collaboration with Sophia Borowka

Max-Planck-Institute for Physics, Munich

ACAT Beijing May 17, 2013

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO
- calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO
- calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited
- numerical methods are in general easier to automate, problems mainly are
 - extraction of IR and UV singularities
 - numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - speed/accuracy

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO
- calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited
- numerical methods are in general easier to automate, problems mainly are
 - extraction of IR and UV singularities
 - numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - speed/accuracy
- SecDec 1.0 offers a solution to the first problem

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO
- calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited
- numerical methods are in general easier to automate, problems mainly are
 - extraction of IR and UV singularities
 - numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - speed/accuracy
- SecDec 1.0 offers a solution to the first problem
- SecDec 2.0 offers a solution to the second problem

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO
- calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited
- numerical methods are in general easier to automate, problems mainly are
 - extraction of IR and UV singularities
 - numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - speed/accuracy
- SecDec 1.0 offers a solution to the first problem
- SecDec 2.0 offers a solution to the second problem
- SECDEC 2.1 improves the third problem (+new features)

The program SECDEC

http://secdec.hepforge.org

SecDec is hosted by Hepforge, IPPP D

- Home Subversion
- Tracker Wiki

SecDec

Sophia Borowka, Jonathon Carter, Gudrun Heinrich

A program to evaluate dimensionally regulated parameter integrals numerically

Download Program FAQ ChangeLog

NEW: Version 2.1 of the program can be downloaded as SecDec-2.1.tar.gz.

Version 2.0 of the program can be downloaded as SecDec-2.0.tar.gz.

To install the program:

- · tar xzvf SecDec-2.1.tar.gz
- cd SecDec-2.1
- /install

Prerequisites: Mathematica (version 6 or higher). Perl. Fortran/C++ compiler

Sector Decomposition

- allows to extract UV and IR singularities from (dimensionally regulated) parameter integrals in an automated way
- ullet produces a Laurent series in ϵ
- coefficients are finite parameter integrals
 - ⇒ integrate numerically
- can be applied in various contexts
 (e.g. multi-loop integrals, NNLO phase space integrals)

Sector Decomposition

history:

- originally devised by K. Hepp 1966
 - (proof of Bogolyubov-Parasiuk theorem on renormalization) also used by Denner, Roth 1996
- construction of a general algorithm to isolate infared divergences from multi-loop integrals: Binoth, GH 2000
- meanwhile applied successfully in various contexts, in particular NNLO real radiation

[Anastasiou et al, Binoth et al, Boughezal, Czakon, Denner/Pozzorini et al, Kunszt et al, Passarino et al, Melnikov, Petriello, Smirnov et al, Somogyi/Trocsanyi et al, Weinzierl et al, . . .]

Sector Decomposition

public programs:

- sector_decomposition (uses Ginac) Bogner, Weinzierl '07 supplemented with CSectors Gluza, Kajda, Riemann, Yundin '10 for construction of integrand in terms of Feynman parameters
- FIESTA (uses Mathematica, C) A. Smirnov, V. Smirnov, M. Tentyukov '08, '09
- ullet SECDEC (uses Mathematica, Fortran/C++)

```
J. Carter, GH '10; S. Borowka, J. Carter, GH '12; S. Borowka, GH '13
```

http://secdec.hepforge.org

Parametric integrals

parameter integrals are ubiquitous when calculating higher order corrections

- (multi-) loop Feynman integrals
- subtraction terms for IR singular real radiation at NNLO
- Wilson loop polygons
-

Multi-loop integrals

general form of scalar L-loop integral with N propagators (to powers ν_i) after Feynman parametrisation:

$$G = \frac{(-1)^N}{\prod_{j=1}^N \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^N dx_j \ x_j^{\nu_j - 1} \ \delta(1 - \sum_{l=1}^N x_l) \ \frac{\mathcal{U}(x)^{N - (L+1)D/2}}{\mathcal{F}(x)^{N - LD/2}}$$

Multi-loop integrals

general form of scalar L-loop integral with N propagators (to powers ν_i) after Feynman parametrisation:

$$G = \frac{(-1)^N}{\prod_{j=1}^N \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^N dx_j \ x_j^{\nu_j - 1} \ \delta(1 - \sum_{l=1}^N x_l) \ \frac{\mathcal{U}(x)^{N - (L+1)D/2}}{\mathcal{F}(x)^{N - LD/2}}$$

example planar double box with
$$p_1^2 = p_2^2 = p_3^2 = 0$$
, $p_4^2 \neq 0$: $N = 7$, $L = 2$, $D = 4 - 2\epsilon$

$$\mathcal{U} = x_{123}x_{567} + x_4x_{123567}$$

$$x_{ijk...} = x_i + x_j + x_k + ...$$

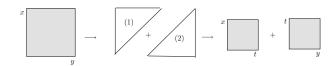
$$\frac{p_1}{1}$$

$$\frac{2}{1}$$

$$\frac{2}{3}$$

$$\frac{5}{6}$$

Problem 1: Factorisation of endpoint singularities



UV and IR singularities will show up as endpoint singularities of type

$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-\epsilon} (a_1 x + a_2 y)^{-1} \left[\underbrace{\Theta(x-y)}_{(1)} + \underbrace{\Theta(y-x)}_{(2)} \right]$$

subst. (1)
$$y = xz$$
 (2) $x = yz$ to remap to unit cube

$$I = \int_0^1 dx \, x^{-1-\epsilon} \int_0^1 dz \, (a_1 + a_2 \, z)^{-1}$$

$$+ \int_0^1 dy \, y^{-1-\epsilon} \int_0^1 dz \, z^{-1-\epsilon} \, (a_1 \, z + a_2)^{-1}$$

singularities are factorized, number of integrals doubled

Problem 2: Dealing with integrable singularities

now consider an integral of type

$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-\epsilon} (a_1 x - a_2 y)^{-1}$$

(e.g. loop integral containing Lorentz invariants with different sign)

- limitation of SecDec 1.0: integrand should not change sign
 ⇒ multi-scale integrals limited to Euclidean region where integrand is positive definite
- NEW (version ≥ 2.0):

Problem 2: Dealing with integrable singularities

now consider an integral of type

$$I = \int_0^1 dx \int_0^1 dy \, x^{-1-\epsilon} (a_1 x - a_2 y)^{-1}$$

(e.g. loop integral containing Lorentz invariants with different sign)

- limitation of SecDec 1.0: integrand should not change sign
 ⇒ multi-scale integrals limited to Euclidean region where integrand is positive definite
- NEW (version ≥ 2.0):

extension of **SecDec** to general kinematics

method: deformation of integration contour into complex plane Soper '99, Nagy, Binoth; Kurihara/Kaneko et al, Anastasiou et al, Weinzierl et al.

Integrable singularities: examples

$$\mathcal{F}_{\text{bubble}} = -p^2 x (1-x) + m^2 - i \delta \quad ----$$

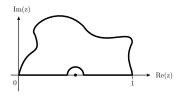
 $\mathcal{F}_{\text{bubble}}$ vanishing at $x = 1/2, p^2 = 4 m^2 \Rightarrow \text{threshold}$

$$\mathcal{F}_{\text{box}} = -s_{12} x_1 x_3 - s_{23} x_2 x_4 - i \delta$$

 $\mathcal{F}_{\mathrm{box}}$ can vanish inside integration region if s_{12} and s_{23} have different sign

("Euclidean region" if both s_{12} and s_{23} are negative)

Contour deformation



Cauchy: integral over closed contour is zero if no poles are enclosed

$$\int_0^1 \prod_{j=1}^N x_j \mathcal{I}(\vec{x}) = \int_0^1 \prod_{j=1}^N x_j \left| \frac{\partial z_k(\vec{x})}{\partial x_l} \right| \mathcal{I}(\vec{z}(\vec{x}))$$

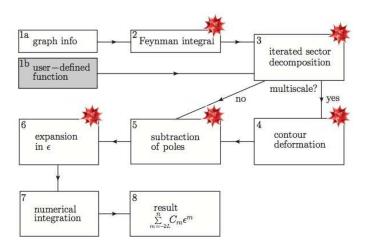
 $i \, \delta$ prescription for Feynman propagators \Rightarrow $Im(\mathcal{F})$ should be < 0 complexify:

$$\vec{z}(\vec{x}) = \vec{x} - i \ \vec{\tau}(\vec{x}) \ , \ \tau_k = \lambda x_k (1 - x_k) \frac{\partial \mathcal{F}(\vec{x})}{\partial x_k}$$

For small λ correct sign of Im part is guaranteed:

$$\mathcal{F}(\vec{z}(\vec{x})) = \mathcal{F}(\vec{x}) - i \lambda \sum_{i} x_{j} (1 - x_{j}) \left(\frac{\partial \mathcal{F}}{\partial x_{j}}\right)^{2} + \mathcal{O}(\lambda^{2})$$

The program SECDEC



numerical integration: CUBA [T. Hahn et al], BASES [S. Kawabata]

Installation and Usage

installation:

```
tar xzvf SecDec-2.1.tar.gz
cd SecDec-2.1
./install
```

prerequisites:
 Mathematica (version 6 or above), perl, Fortran/C++

Installation and Usage

installation:

```
tar xzvf SecDec-2.1.tar.gz
cd SecDec-2.1
./install
```

- prerequisites:
 Mathematica (version 6 or above), perl, Fortran/C++
- user input: two files:
 - parameter.input: parameters for the integrand specification and numerical integration (text file)
 - graph.m: definition of the integrand (Mathematica syntax)

Usage: parameter.input

Bubble2Lrank3.input - /Users/gudrun/SecDec-2.1/loop/demos/	
ile <u>E</u> dit <u>S</u> earch <u>Pr</u> eferences Shell Ma <u>cro W</u> indows	<u>H</u> e
######################################	
subdirectory for the mathematica output files (will be created if non-existent): bdir=2loop	
graphname (can contain underscores, numbers, but should not contain commas) aph=Bubble2Lrank3	
number of propagators: opagators=5	
number of external legs: gs=2	
number of loops: ops=2	
construct integrand (F and U) via topological cuts (only for scalar integrals) default is 0 (no cut construction used) ttconstruct=0 ***********************************	

Usage: graph.m

```
N Bubble2Lrank3.m - /Users/gudrun/SecDec-2.1/loop/demos/
                  Preferences Shell Macro Windows
                                                                                        Help
File
      Edit Search
(* USER INPUT: *)
(* give -list of loop momenta (momlist)
           -list of propagators (proplist):
           -numerator: list of scalar products of loop momenta contracted with
            external vectors or loop momenta;
           -list of propagator powers (powerlist), default is 1:
            powers of propagators as listed in proplist
(* example is 2-loop 2-point integral with k1.k2 k1.p1 in the numerator *)
momlist={k1, k2}:
proplist=\{k1^2-ms[1], (k1+p1)^2-ms[1], (k1-k2)^2, (k2+p1)^2-ms[2], k2^2-ms[2]\};
numerator={k1*k2.k1*p1};
(* optional: give propagator powers if different from one *)
powerlist=Table[1, {i, Length[proplist]}];
(* optional: give on-shell conditions *)
(* note that in constructing F. (pi+pj)^2 will automatically be called sp[i,j];
    pi^2 will be called ssp[i];
    masses m i^2 must be called ms[i];
    for the numerator, only the replacements given explicitly in onshell will be made *1
onshell={}:
(* Dim can be changed, but symbol for epsilon must be the same *)
Dim=4-2*eps;
```

Usage

to launch one run:

./launch -p parameter.input -t graph.m

to scan over a set of parameter values:

- do decomposition once (exeflag=1 in parameter.input)
- define parameter values in multiparam.input

perl multinumerics.pl -p multiparam.input

New features of SecDec 2

- loop integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA-3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out
 analytically already)

New features of SecDec 2

- loop integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA-3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out
 analytically already)
- general parameter integrals: (extraction of endpoint singularities from general parametric functions)
 - option to define implicit functions

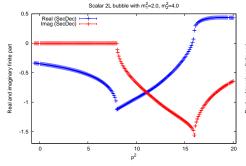
New features of SecDec 2

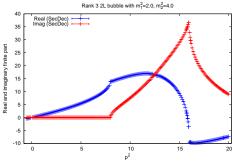
- loop integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA-3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out
 analytically already)
- general parameter integrals: (extraction of endpoint singularities from general parametric functions)
 - option to define implicit functions
- both parts:
 - loops over ranges of numerical values automated

Results: tensor integrals

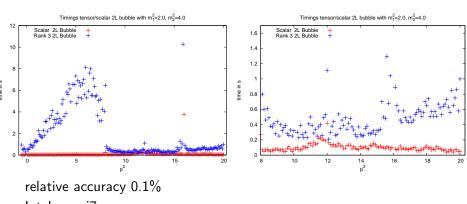
a two-mass two-loop bubble

(analytical result:1-dim integral representation) [Bauberger, Böhm '95]



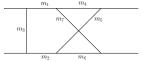


Timings for tensor integrals



relative accuracy 0.1% Intel core i7 processor below 1st threshold at $p^2 = 8$: Imaginary part zero \Rightarrow artificially increases integration time good timings for tensor integrals \Rightarrow no need for reduction

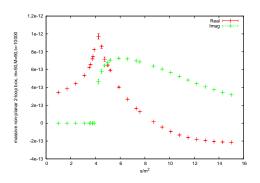
Non-planar four-point functions



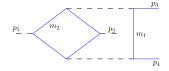
compared with numerical result from Yuasa et al, CPC 183 (2012)

$$m_1=m_2=m_5=m_6=m=50,\ m_3=m_4=m_7=M=90,\ p_1^2=p_2^2=p_3^2=p_4^2=m^2,\ s_{23}=-10^4$$

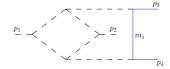
timings: (relative accuracy 10^{-3}): far from threshold: $\sim 20\,s$, close to threshold: $\sim 500\,s$



Non-planar four-point functions for $pp o t \bar{t}$ @NNLO



ggtt1: finite analytic result unknown (blue lines are massive)



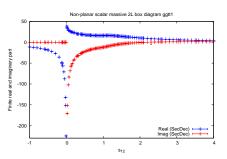
ggtt2: $1/\epsilon^4$ poles analytical manipulations and new type of transformations to assist SecDec

ightarrow triggered development of code to allow non-standard input

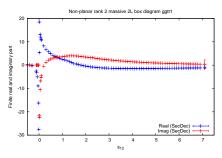
Non-planar four-point functions: ggtt1

$$m_1 = m_2 = 1$$
, $p_1^2 = p_2^2 = 0$, $p_3^2 = p_4^2 = m_1^2$, $s_{23} = -1.25$

analytical result unknown



scalar integral

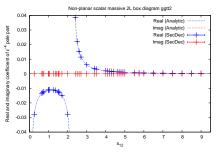


rank two tensor integral $(\mathcal{N} = k_1 \cdot k_2)$

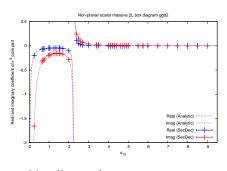
timings per phase space point: (relative accuracy 10^{-3}) far from threshold: $\mathcal{O}(10\,s)$, very close to threshold: $\mathcal{O}(500\,s)$

Non-planar four-point functions: ggtt2

$$m_1 = 1$$
, $p_1^2 = p_2^2 = 0$, $p_3^2 = p_4^2 = m_1^2$, $s_{23} = -1.25$



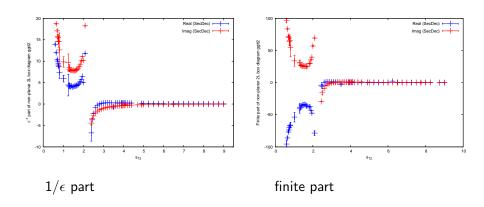
leading pole



subleading pole

analytical result by Manteuffel, Studerus '12

Non-planar four-point functions: ggtt2



• SECDEC is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically

- SecDec is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org

- SECDEC is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation

- SECDEC is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate contracted tensor integrals

- SecDec is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate contracted tensor integrals
 - extension to wider class of integrals

- SecDec is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate contracted tensor integrals
 - extension to wider class of integrals

OUTLOOK:

phenomenological application (NNLO)

- SECDEC is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate contracted tensor integrals
 - extension to wider class of integrals

OUTLOOK:

- phenomenological application (NNLO)
- combination with unitarity-inspired reduction of two-loop amplitudes