Numerical multi-loop calculations with SecDec

Gudrun Heinrich

in collaboration with

Sophia Borowka

Max-Planck-Institute for Physics, Munich

ACAT Beijing May 17, 2013
Motivation

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO.
- Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited.
Motivation

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO calculations. Beyond NLO, however, automation is difficult, and analytic methods to calculate, for example, two-loop integrals involving massive particles are limited.

- Numerical methods are in general easier to automate, and the main problems are:
 1. Extraction of IR and UV singularities
 2. Numerical convergence in the presence of integrable singularities (e.g., thresholds)
 3. Speed/accuracy
Motivation

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO.
- Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited.
- Numerical methods are in general easier to automate, problems mainly are
 1. extraction of IR and UV singularities
 2. numerical convergence in the presence of integrable singularities (e.g. thresholds)
 3. speed/accuracy

- **SecDec 1.0** offers a solution to the first problem.
A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO. Calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited. Numerical methods are in general easier to automate, problems mainly are:

1. Extraction of IR and UV singularities
2. Numerical convergence in the presence of integrable singularities (e.g. thresholds)
3. Speed/accuracy

SecDec 1.0 offers a solution to the first problem

SecDec 2.0 offers a solution to the second problem
Motivation

- A lot of progress has been achieved towards the goal of describing hadron collider processes consistently at NLO calculations beyond NLO are also progressing well, but automation is difficult, and analytic methods to calculate e.g. two-loop integrals involving massive particles are limited
- numerical methods are in general easier to automate, problems mainly are
 1. extraction of IR and UV singularities
 2. numerical convergence in the presence of integrable singularities (e.g. thresholds)
 3. speed/accuracy

- SecDec 1.0 offers a solution to the first problem
- SecDec 2.0 offers a solution to the second problem
- SecDec 2.1 improves the third problem (+new features)
The program **SecDec**

http://secdec.hepforge.org

SecDec

Sophia Borowka, Jonathon Carter, Gudrun Heinrich

A program to evaluate dimensionally regulated parameter integrals numerically

Download Program FAQ ChangeLog

NEW: Version 2.1 of the program can be downloaded as `SecDec-2.1.tar.gz`.

Version 2.0 of the program can be downloaded as `SecDec-2.0.tar.gz`.

To install the program:

- `tar xzvf SecDec-2.1.tar.gz`
- `cd SecDec-2.1`
- `./install`

Prerequisites: Mathematica (version 6 or higher), Perl, Fortran/C++ compiler
Sector Decomposition

- allows to extract UV and IR singularities from (dimensionally regulated) parameter integrals in an automated way
- produces a Laurent series in ϵ
- coefficients are finite parameter integrals
 \Rightarrow integrate numerically
- can be applied in various contexts
 (e.g. multi-loop integrals, NNLO phase space integrals)
history:

- originally devised by K. Hepp 1966
 (proof of Bogolyubov-Parasiuk theorem on renormalization)
- also used by Denner, Roth 1996
- construction of a general algorithm to isolate infrared divergences from multi-loop integrals: Binoth, GH 2000
- meanwhile applied successfully in various contexts, in particular NNLO real radiation
public programs:

- **sector_decomposition (uses Ginac)** Bogner, Weinzierl '07
 supplemented with **CSectors** Gluza, Kajda, Riemann, Yundin '10
 for construction of integrand in terms of Feynman parameters

- **FIESTA (uses Mathematica, C)** A. Smirnov, V. Smirnov, M. Tentyukov '08, '09

- **SecDec (uses Mathematica, Fortran/C++)**
 J. Carter, GH '10; S. Borowka, J. Carter, GH '12; S. Borowka, GH '13

http://secdec.hepforge.org
Parametric integrals

Parameter integrals are ubiquitous when calculating higher order corrections:

- (multi-)loop Feynman integrals
- Subtraction terms for IR singular real radiation at NNLO
- Wilson loop polygons
- ...
Multi-loop integrals

general form of scalar \textit{L-loop integral} with \(N \) propagators (to powers \(\nu_j \)) after Feynman parametrisation:

\[
G = \frac{(-1)^N}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_{0}^{\infty} \prod_{j=1}^{N} dx_j \ x_j^{\nu_j-1} \delta(1 - \sum_{l=1}^{N} x_l) \ \frac{U(x)^{N-(L+1)D/2}}{\mathcal{F}(x)^{N-LD/2}}
\]
Multi-loop integrals

The general form of scalar L-loop integral with \(N \) propagators (to powers \(\nu_j \)) after Feynman parametrisation:

\[
G = \frac{(-1)^N}{\prod_{j=1}^{N} \Gamma(\nu_j)} \int_0^\infty \prod_{j=1}^{N} dx_j \; x_j^{\nu_j - 1} \delta(1 - \sum_{l=1}^{N} x_l) \; \frac{\mathcal{U}(x)^{N-(L+1)D/2}}{\mathcal{F}(x)^{N-LD/2}}
\]

Example planar double box with \(p_1^2 = p_2^2 = p_3^2 = 0, p_4^2 \neq 0 \) : \(N = 7, L = 2, D = 4 - 2\epsilon \)

\[
\mathcal{F} = -s \left(x_2x_3x_{4567} + x_5x_6x_{1234} + x_2x_4x_6 + x_3x_4x_5\right) - t x_1x_4x_7 - p_4^2 x_7(x_2x_4 + x_5x_{1234}) + \mathcal{U} \sum_i x_i \; m_i^2 - i \delta
\]

\[
\mathcal{U} = x_{123}x_{567} + x_4x_{123567}
\]

\[
X_{ijk...} = x_i + x_j + x_k + \ldots
\]
UV and IR singularities will show up as endpoint singularities of type

\[I = \int_0^1 dx \int_0^1 dy \ x^{-1-\epsilon} \ (a_1 \ x + a_2 \ y)^{-1} \left[\Theta(x - y) + \Theta(y - x) \right] \]

with

 subst. (1) \(y = x \ z \) \hspace{1cm} (2) \(x = y \ z \) to remap to unit cube

\[I = \int_0^1 dx \ x^{-1-\epsilon} \int_0^1 dz \ (a_1 + a_2 \ z)^{-1} \]

\[+ \int_0^1 dy \ y^{-1-\epsilon} \int_0^1 dz \ z^{-1-\epsilon} \ (a_1 \ z + a_2)^{-1} \]

singularities are factorized, number of integrals doubled
Problem 2: Dealing with integrable singularities

now consider an integral of type

\[I = \int_0^1 dx \int_0^1 dy \, x^{-1-\epsilon} (a_1 x - a_2 y)^{-1} \]

(e.g. loop integral containing Lorentz invariants with different sign)

- **limitation of SecDec 1.0:**
 - integrand should not change sign
 - \(\Rightarrow \) multi-scale integrals limited to Euclidean region where integrand is positive definite

- **NEW (version \(\geq 2.0 \):**
Problem 2: Dealing with integrable singularities

now consider an integral of type

\[I = \int_0^1 dx \int_0^1 dy \, x^{-1-\epsilon} (a_1 x - a_2 y)^{-1} \]

(e.g. loop integral containing Lorentz invariants with different sign)

- **limitation of SecDec 1.0:**
 - integrand should not change sign
 - \(\Rightarrow \) multi-scale integrals limited to Euclidean region where integrand is positive definite

- **NEW (version \(\geq 2.0 \):**
 - extension of SecDec to general kinematics

 method: deformation of integration contour into complex plane

Integrable singularities: examples

\[\mathcal{F}_{\text{bubble}} = -p^2 x (1 - x) + m^2 - i \delta \]

\[\mathcal{F}_{\text{bubble}} \text{ vanishing at } x = 1/2, p^2 = 4 m^2 \Rightarrow \text{threshold} \]

\[\mathcal{F}_{\text{box}} = -s_{12} x_1 x_3 - s_{23} x_2 x_4 - i \delta \]

\[\mathcal{F}_{\text{box}} \text{ can vanish inside integration region if } s_{12} \text{ and } s_{23} \text{ have different sign} \]

("Euclidean region" if both \(s_{12} \) and \(s_{23} \) are negative)
Contour deformation

Cauchy: integral over closed contour is zero if no poles are enclosed

\[
\int_0^1 \prod_{j=1}^N x_j \mathcal{I}(\vec{x}) = \int_0^1 \prod_{j=1}^N x_j \left| \frac{\partial z_k(\vec{x})}{\partial x_l} \right| \mathcal{I}(\vec{z}(\vec{x}))
\]

\(i \delta \) prescription for Feynman propagators \(\Rightarrow Im(F) \) should be \(< 0 \)

Complexify:

\[
\vec{z}(\vec{x}) = \vec{x} - i \vec{\tau}(\vec{x}), \quad \tau_k = \lambda x_k (1 - x_k) \frac{\partial F(\vec{x})}{\partial x_k}
\]

For small \(\lambda \) correct sign of \(Im \) part is guaranteed:

\[
F(\vec{z}(\vec{x})) = F(\vec{x}) - i \lambda \sum_j x_j (1 - x_j) \left(\frac{\partial F}{\partial x_j} \right)^2 + O(\lambda^2)
\]
The program **SecDec**

numerical integration: **CUBA** [T. Hahn et al], **BASES** [S. Kawabata]
Installation and Usage

- **installation:**
 - `tar xzvf SecDec-2.1.tar.gz`
 - `cd SecDec-2.1`
 - `./install`

- **prerequisites:**
 - Mathematica (version 6 or above), perl, Fortran/C++
Installation and Usage

- **installation:**

 `tar xzvf SecDec-2.1.tar.gz`

 `cd SecDec-2.1`

 `./install`

- **prerequisites:**

 Mathematica (version 6 or above), perl, Fortran/C++

- **user input:** two files:

 - **parameter.input:** parameters for the integrand specification and numerical integration (text file)

 - **graph.m:** definition of the integrand (Mathematica syntax)
Usage: parameter.input

```plaintext
# input parameters for sector decomposition
#
# all lines beginning with # are comments
#
# subdirectory for the mathematica output files (will be created if non-existent):
subdir=2loop
#
# graphname (can contain underscores, numbers, but should not contain commas)
graph=Bubble2Lrank3
#
# number of propagators:
propagators=5
#
# number of external legs:
legs=2
#
# number of loops:
loops=2
#
# construct integrand (F and U) via topological cuts (only for scalar integrals)
default is 0 (no cut construction used)
cutconstruct=0

# parameters for subtractions and epsilon expansion

# epsord: level up to which expansion in eps is desired
# (default is epsord=0: Laurent series is cut after finite part eps^0)
# series will be calculated from eps^(-maxpole) to eps^epsord
# note that epsord is negative if only some pole coeffs are required
epsord=0
#
# flag for prefactor:
```
Usage: graph.m

```matlab
(* USER INPUT: *)

(* give -list of loop momenta (momlist): *)
- list of propagators (proplist): 
  - numerator: list of scalar products of loop momenta contracted with 
    external vectors or loop momenta; 
  - list of propagator powers (powerlist), default is 1: 
    powers of propagators as listed in proplist *)

(* example is 2-loop 2-point integral with k1.k2 k1.p1 in the numerator *)

momlist={k1,k2};

proplist={k1^2-ms[1],(k1+p1)^2-ms[1],(k1-k2)^2,(k2+p1)^2-ms[2],k2^2-ms[2]};

numerator={k1*k2,k1*p1};

(* optional: give propagator powers if different from one *)

powerlist=Table[1,{i,Length[proplist]}];

(* optional: give on-shell conditions *)
(* note that in constructing F, (pi+pj)^2 will automatically be called sp[i,j]; 
  pi^2 will be called ssp[i]; 
  masses m_i^2 must be called ms[i]; 
  for the numerator, only the replacements given explicitly in onshell will be made *)

onshell={};

(* Dim can be changed, but symbol for epsilon must be the same *)
Dim=4-2*eps;
```

Numerical multi-loop calculations with SecDec
Gudrun Heinrich
to launch one run:

```bash
./launch -p parameter.input -t graph.m
```

to scan over a set of parameter values:

- do decomposition once (`exeflag=1` in `parameter.input`)
- define parameter values in `multiparam.input`

```bash
perl multinumerics.pl -p multiparam.input
```
New features of **SecDec 2**

- **loop** integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA–3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out analytically already)
New features of **SecDec 2**

- **loop** integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA–3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out analytically already)

- **general** parameter integrals: (extraction of endpoint singularities from general parametric functions)
 - option to define implicit functions
New features of **SecDec 2**

- **loop** integrals:
 - no restriction on the kinematics!
 - tensors of (in principle) arbitrary rank
 - several options for the user to tune the numerical integration
 - can be parallelized easily (also thanks to CUBA-3.x [T. Hahn])
 - extension to non-standard loop integrals
 (useful e.g. if some parameter(s) have been integrated out analytically already)

- **general** parameter integrals: (extraction of endpoint singularities from general parametric functions)
 - option to define implicit functions

- **both** parts:
 - loops over ranges of numerical values automated
Results: tensor integrals

A two-mass two-loop bubble

(Analytical result: 1-dim integral representation)

[Bauberger, Böhm '95]

Numerical multi-loop calculations with SecDec

Gudrun Heinrich
Timings for tensor integrals

relative accuracy 0.1%
Intel core i7 processor
below 1st threshold at $p^2 = 8$: Imaginary part zero
 ⇒ artificially increases integration time
good timings for tensor integrals ⇒ **no need for reduction**
Non-planar four-point functions

compared with numerical result from Yuasa et al, CPC 183 (2012)

\(m_1 = m_2 = m_5 = m_6 = m = 50, \ m_3 = m_4 = m_7 = M = 90, \ p_1^2 = p_2^2 = p_3^2 = p_4^2 = m^2, \ s_{23} = -10^4 \)

timings: (relative accuracy \(10^{-3}\)): far from threshold: \(\sim 20\) s, close to threshold: \(\sim 500\) s
Non-planar four-point functions for $pp \rightarrow t\bar{t}@\text{NNLO}$

ggtt1: finite analytic result unknown (blue lines are massive)

ggtt2: $1/\epsilon^4$ poles
- Analytical manipulations and new type of transformations to assist SecDec
- Triggered development of code to allow non-standard input
Non-planar four-point functions: g_{gtt1}

$m_1 = m_2 = 1$, $p_1^2 = p_2^2 = 0$, $p_3^2 = p_4^2 = m_1^2$, $s_{23} = -1.25$

analytical result unknown

scalar integral

rank two tensor integral

$(N = k_1 \cdot k_2)$

timings per phase space point: (relative accuracy 10^{-3})

far from threshold: $O(10 \text{ s})$, very close to threshold: $O(500 \text{ s})$
Non-planar four-point functions: g_{gtt2}

$m_1 = 1, \ p_1^2 = p_2^2 = 0, \ p_3^2 = p_4^2 = m_1^2, \ s_{23} = -1.25$

leading pole

subleading pole

analytical result by Manteuffel, Studerus '12
Non-planar four-point functions: ggtt2

\[1/\epsilon \text{ part}\]

\[\text{finite part}\]
\textbf{SecDec} is a flexible tool to calculate multi-loop integrals
(or more general parameter integrals) numerically
Summary and Outlook

- **SecDec** is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically.
- publicly available at http://secdec.hepforge.org
Summary and Outlook

- **SecDec** is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- **NEW:**
 - loop integrals **NOT** restricted to Euclidean kinematics anymore
 - *automated* procedure to optimize the contour deformation
Summary and Outlook

- **SecDec** is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically
- publicly available at http://secdec.hepforge.org
- NEW:
 - loop integrals **NOT** restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate **contracted tensor integrals**
Summary and Outlook

- **SecDec** is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically.
- publicly available at http://secdec.hepforge.org
- **NEW:**
 - loop integrals NOT restricted to Euclidean kinematics anymore
 - automated procedure to optimize the contour deformation
 - option to evaluate contracted tensor integrals
 - extension to wider class of integrals
Summary and Outlook

- **SecDec** is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically.
- Publicly available at http://secdec.hepforge.org

NEW:
- Loop integrals **NOT** restricted to Euclidean kinematics anymore
- **Automated** procedure to optimize the contour deformation
- Option to evaluate **contracted tensor integrals**
- Extension to **wider class** of integrals

OUTLOOK:
- Phenomenological application (NNLO)
SecDec is a flexible tool to calculate multi-loop integrals (or more general parameter integrals) numerically.

publicly available at http://secdec.hepforge.org

NEW:
- loop integrals **NOT** restricted to Euclidean kinematics anymore
- automated procedure to optimize the contour deformation
- option to evaluate **contracted tensor integrals**
- extension to **wider class** of integrals

OUTLOOK:
- phenomenological application (NNLO)
- combination with unitarity-inspired reduction of two-loop amplitudes