Computation of multi-leg amplitudes with NJet

Valery Yundin Niels Bohr International Academy & Discovery Center

in collaboration with Simon Badger, Benedikt Biedermann and Peter Uwer

ACAT 2013, 16-21 May 2013, IHEP Beijing

NLO calculations

NLO results provide more accurate predictions and theoretical uncertainties for multi-jet backgrounds in new physics searches.

Hard process ingredients

$$\sigma^{\text{NLO}} = \int_{n} \left(d\sigma_{n}^{\text{B}} + \boxed{d\sigma_{n}^{\text{V}}} + \int_{1} d\sigma_{n+1}^{\text{S}} \right) + \int_{n+1} \left(d\sigma_{n+1}^{\text{R}} - d\sigma_{n+1}^{\text{S}} \right)$$

$$\boxed{d\sigma_n^{\mathcal{V}}} = \frac{1}{2\hat{s}} \prod_{\ell=1}^n \frac{d^3k_\ell}{(2\pi)^3 2E_\ell} \Theta_{\mathsf{n-njet}}(2\pi)^4 \delta(P) \left| \left| \mathcal{M}_n(ij \to n) \right|^2 \right|$$

QCD matrix elements

$$\left|\mathcal{M}_{n}(ij \to n)\right|^{2} = \sum_{\text{spin color}} \mathcal{A}_{n}^{1\text{-loop}} \times \mathcal{A}_{n}^{\text{tree}^{\dagger}}$$

Automated One-Loop Amplitudes

General solutions to virtual corrections

- Helac-NLO [public] SM
- GoSam [public] SM, MSSM, UFO
- NJet [public] jets
- BlackHat [semi-public] V+jets, jets
- MadLoop, SM, BSM
- Open Loops, QCD SM
- Recola, SM+EW
- Rocket, W+jets, WW+jets, $t\bar{t}$ +jet
- MCFM [public] max. $2 \rightarrow 3$
- Feynman based approaches: VBFNLO [public], Denner et al., FeynCalc [public], Reina et al. ...

[arXiv:1110.1499]

[arXiv:1111.2034]

[arXiv:1209.0100]

[arXiv:0803.4180+...]

[arXiv:1103.0621]

[arXiv:1111.5206]

[arXiv:1211.6316]

[arXiv:0805.2152+...]

[http://mcfm.fnal.gov]

From NGluon to NJet

NGluon: public C++ library for multi-parton primitive amplitudes via unitarity (now part of NJet) [arXiv:1011.2900]

- Efficient tree amplitudes using Berends-Giele recursion.
- Rational terms from massive loop cuts.
- Extraction of integral coefficients via Fourier projections.
- Everything is in 4 dimensions (except loop integrals).

NJet: public C++ library for multi-parton matrix elements in massless QCD [https://bitbucket.org/njet/njet] [arXiv:1209.0100]

Features

- ▶ Full colour-summed amplitudes for up to 5 outgoing partons.
- Binoth Les Houches Accord interface for MC generators.

Structure of One-Loop Amplitudes

 Gauge theory amplitudes reduced to box topologies or simpler [Passarino,Veltman;Melrose]

Isolate logarithms with cuts and exploit on-shell simplifications
 [Bern,Dixon,Kosower]

NParton computes arbitrary multi-fermion primitives.

All primitives are separated into two classes

- With **mixed** fermion and gluon loop content $(l_0 = gluon)$
- With internal **fermion loops** $(l_0 = quark)$

These two classes cover all partonic primitives in one loop QCD.

Colour decomposition of an L-loop amplitude:

$$\mathcal{A}_{n}^{(L)}(\{p_{i}\}) = \sum_{c} \underbrace{T_{c}(\{a_{i}\})}_{\text{colour basis}} \underbrace{\mathcal{A}_{n;c}^{(L)}(p_{1},\ldots,p_{n})}_{\text{partial amplitudes}}$$

Partial amplitudes \rightarrow squared matrix elements

$$\left|\mathcal{M}_{n}\right|^{2} = \sum_{\mathsf{hel}} \sum_{\mathsf{col}} \mathcal{A}_{n}^{(L)} \mathcal{A}_{n}^{(0)\dagger} = \sum_{\mathsf{hel}} \sum_{cc'} \mathcal{A}_{n;c}^{(L)} \cdot \mathcal{C}_{cc'} \cdot \mathcal{A}_{n;c'}^{(0)\dagger}$$

Colour matrix

$$C_{cc'} = \sum_{\{a_i\}} T_c(\{a_i\}) T_{c'}(\{a_i\})$$
$$T_c(\{a_i\}) = T_{jk}^{a_1} \dots \delta_{lm} \dots$$

6 / N

Colour decomposition of a 1-loop amplitude:

Partial amplitudes are linear combinations of primitive amplitudes.

$$A_{n;c}^{(1)} = \sum_{k} a_{k;c} A_{n}^{[m]} + N_{f} b_{k;c} A_{n}^{[f]}$$

Partial-Primitive decomposition for gluons and $q\bar{q} + gluons$:

- Tree level: Kleiss-Kuijf basis of (n-2)! primitives
- One-loop: a basis of (n-1)! primitives.

[Kleiss,Kuijf], [Bern,Dixon,Dunbar,Kosower]

Partial-Primitive decomposition for multi-quark case:

No analytic formula. Reconstruct partials using diagram matching. [Ellis,Kunszt,Melnikov,Zanderighi], [Ita,Ozeren], [NJet]

Outline of the algorithm

- 1. Generate all diagrams' topologies for the amplitude \mathcal{A}_n
- 2. Write primitives P_i as combinations of colour-stripped diagrams K_i using matching matrix M_{ij}
- 3. Invert the system to get partial amplitudes in terms of **independent set** of primitives \hat{P}

$$\mathcal{A}_n = \sum_c T_c(\{a_i\}) \sum_{j=1}^{\hat{N}_{\mathsf{pri}}} Q_{cj} \hat{P}_j$$

Ensure linearly independent set by capturing all relations between color-ordered diagrams.

Number of primitives in tree, mixed and fermion loop amplitudes

Process	$N_{pri}^{[0]}$	$N_{\rm pri}^{[m]}$	$N_{pri}^{[f]}$	Process	$N_{ m pri}^{[0]}$	$N_{pri}^{[m]}$	$N_{pri}^{[f]}$
4 g	2	3	3	5g	6	12	12
$\overline{u}u + 2g$	2	6	1	$\overline{u}u + 3g$	6	24	6
$\overline{u}u\overline{d}d$	1	4	1	$\overline{u}u\overline{d}dg$	3	16	3
Process	$N_{\rm pri}^{[0]}$	$N_{\rm pri}^{[m]}$	$N_{\rm pri}^{[f]}$	Process	$N_{\rm pri}^{[0]}$	$N_{\rm pri}^{[m]}$	$N_{\rm pri}^{[f]}$
6 g	24	60	60	7 g	120	360	360
$\overline{u}u + 4g$	24	120	33	$\overline{u}u + 5g$	120	720	230
$\overline{u}u\overline{d}d + 2$	g 12	80	13	$\overline{u}u\overline{d}d + 3$	<i>g</i> 60	480	75
$\overline{u}u\overline{d}d\overline{s}s$	4	32	4	$\overline{u}u\overline{d}d\overline{s}sg$	20	192	20

Process	$N_{ m pri}^{[0]}$	$N_{\rm pri}^{[m]}$	$N_{pri}^{[f]}$
8 g	720	2520	2520
$\overline{u}u + 6g$	720	5040	1800
$\overline{u}u\overline{d}d + 4g$	360	3360	712
$\overline{u}u\overline{d}d\overline{s}s + 2g$	120	1344	263
$\overline{u}u\overline{d}d\overline{s}s\overline{c}c$	30	384	65

Desymmetrized amplitudes

Squared amplitudes are totally symmetric over final state gluons

$$\left|\mathcal{A}(x,g_1,\ldots,g_n,y)\right|^2 = \left|\mathcal{A}(x,\sigma\{g_1,\ldots,g_n\},y)\right|^2$$

Gluon phase space integration is a symmetric operator

$$\int F(g_1,\ldots,g_n) \, \mathrm{d} PS_n = \int F(\sigma\{g_1,\ldots,g_n\}) \, \mathrm{d} PS_n$$

Could replace squared amplitudes with something simpler

$$\int \left| \mathcal{A}_{x \to n(g)} \right|^2 \mathrm{d}PS_n = \int \left[\mathcal{A}^{\mathsf{dsym}}(g_1, \dots, g_n) \right] \mathrm{d}PS_n$$

where $\sum_{P_n} \mathcal{A}^{\mathsf{dsym}}(g_1, \dots, g_n) = n! \left| \mathcal{A}_{x \to n(g)} \right|^2, \quad P_n \in \sigma\{g_1, \dots, g_n\}$

Example:

$$\iiint_{a}^{b} (x^{2}y + x^{2}z + xy^{2} + xz^{2} + y^{2}z + yz^{2}) dx dy dz = \iiint_{a}^{b} 6x^{2}y dx dy dz$$

10 / N

Desymmetrized gluonic amplitudes

Special non-symmetric gluon colour sums

- Contain significantly fewer loop primitives
- Give original full colour sums after symmetrization

$$\sigma_{gg \to n(g)}^{V} = \int \mathrm{d}P S_n \, \overline{A^{(0)\dagger} \cdot \mathcal{C}_{n! \times (n+1)!/2} \cdot A^{(1)}}$$
$$= (n-2)! \, \int \mathrm{d}P S_n \, \overline{A^{(0)\dagger} \cdot \mathcal{C}_{n! \times (n+1)}^{\mathrm{dsym}} \cdot A^{(1),\mathrm{dsym}}}$$

n!/2 reduction of time per point¹

	$gg \rightarrow 3g$	$gg \rightarrow 4g$	$gg \rightarrow 5g$
Standard sum	0.22 s	6.19 s	171.31 s
De-symmetrized	0.07 s	0.50 s	2.76 s
Speedup	$\times 3$	$\times 12$	$\times 60$

¹Where n is the number of final state gluons

Sources of accuracy loss

- Accumulation of rounding errors negligible
- Catastrophic large cancellations significant in certain kinematic regions (small Gram determinants, etc)

Large cancellation

In finite precision machine arithmetic the tail is zero-extended.

Scaling test

- ► Evaluate the amplitude several times using different "scaled" units (for instance: 1×GeV, 1.33×GeV, etc).
- Use known dimension of the amplitudes to scale them back to a common unit (GeV).
- The difference between obtained values is an error estimate.

Why it works?

		1.11111115495439
	_	1.11111112345678
A_1	=	0.00000000 3149761 00000000
$\times 1.33$		$1.111111118228751 \not\models i \leftarrow round-off$
$\times 1.33$	—	$1.111111113913578 \\ \fbox \leftarrow round-off$
$\times 1.33$	=	0.000000043151730000000000000000000000000000000000
A_2	=	0.00000000 3149761 <u>31386861</u>
		difference

Testing the scaling test

Reliable, but essentially statistical. A safety margin of 2 digits is advised.

Left: 7 gluon squared amplitude. Right: 4 quarks + 3 gluons.

Thick lines – double precision.

Thin lines – fixed with quadruple precision.

Full colour and helicity sum time per point [clang, Xeon 3.30 GHz].

process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[\mathbf{s}] (\%)$	process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$
4g	0.030	0.030 (0.00)	5 g	0.22	0.22 (0.22)
$\overline{u}u+2g$	0.032	0.032 (0.00)	$\overline{u}u+3g$	0.34	0.35 (0.06)
$\overline{u}u\overline{d}d$	0.011	0.011 (0.00)	$\overline{u}u\overline{d}d+g$	0.11	0.11 (0.00)
$\overline{u}u\overline{u}u$	0.022	0.022 (0.00)	$\overline{u}u\overline{u}u+g$	0.22	0.22 (0.03)
process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$	process	$T_{sd}[s]$	$T_{4 \text{ dig.}}[s] (\%)$
6 g	6.19	6.81 (1.37)	7 g	171.3	276.7 (8.63)
$\overline{u}u+4g$	7.19	7.40 (0.38)	$\overline{u}u+5g$	195.1	241.2 (3.25)
$\overline{u}u\overline{d}d+2g$	2.05	2.06 (0.08)	$\overline{u}u\overline{d}d+3g$	45.7	48.8 (0.88)
$\overline{u}u\overline{u}u+2g$	4.08	4.15 (0.21)	$\overline{u}u\overline{u}u+3g$	92.5	101.5 (1.29)
$\overline{u}u\overline{d}d\overline{s}s$	0.38	0.38 (0.00)	$\overline{u}u\overline{d}d\overline{s}sg$	7.9	8.1 (0.23)
$\overline{u}u\overline{d}d\overline{d}d$	0.74	0.74 (0.00)	$\overline{u}u\overline{d}d\overline{d}dg$	15.8	16.2 (0.29)
$\overline{u}u\overline{u}u\overline{u}u$	2.16	2.17 (0.02)	$\overline{u}u\overline{u}u\overline{u}u\overline{u}ug$	47.1	48.6 (0.41)

All times include two evaluations for the scaling test.

Binoth Les Houches Accord Interface

Create an 'order' file

NJet takes an 'order' file and returns a 'contract' file

Check that requested options were accepted

Link with libnjet.so Call 'Start' once to initialize Call 'EvalSubProcess' to evaluate PS points

Use returned values to calculate XS $1/eps^2$, 1/eps, finite, born

Recent progress in fixed order NLO jet production

- ▶ $pp \rightarrow 2$ jets [Kunszt,Soper (1992)]
 - [Giele,Glover,Kosower (1993)]
- ▶ $pp \rightarrow 3$ jets [gluons Trocsanyi (1996)] [gluons Giele,Kilgore (1997)] [Nagy NLOJET++ (2003)]
- ▶ $pp \rightarrow 4$ jets [Bern et al. BLACKHAT (2012)] [Badger, Biedermann, Uwer, VY (2013)]

• $pp \rightarrow 5$ jets [Badger, Biedermann, Uwer, VY (preliminary)]

Calculation setup

Tools (linked together with BLHA interface)

- NJet full colour virtual matrix elements scalar integrals — QCDLoop/FF [Ellis,Zanderighi,van Oldenborgh] extended precision — libqd [Hida,Li,Bailey]
- Sherpa/COMIX trees, CS subtraction, PS integration

 $[{\sf Hoeche}, {\sf Gleisberg}, {\sf Krauss}, {\sf Kuhn}, {\sf Soff}, \dots]$

ATLAS jet cuts

▶ anti-kt R = 0.4, $p_T^{1st} > 80$ GeV, $p_T^{other} > 60$ GeV, $|\eta| < 2.8$

Parameters

•
$$pp
ightarrow$$
 2, 3, 4 and 5 jets at 7 TeV

- $μ_R = μ_F = \hat{H}_T/2$, scale variations $\hat{H}_T/4$ and \hat{H}_T MSTW2008 PDF set, $α_s(M_Z)$ from PDFs
 - 19 / N

	3 jets	4 jets	5 jets
$\sigma_{\rm LO}~{\rm [nb]}$	$93.40(0.03)^{+50.4}_{-30.3}$	$9.98(0.01)^{+7.4}_{-3.9}$	$1.003(0.005)^{+0.94}_{-0.45}$
$\sigma_{\rm NLO}~[{\rm nb}]$	$53.74(0.16)^{+2.1}_{-20.7}$	$5.61(0.13)^{+0.0}_{-2.2}$	$0.578(0.13)^{+0.0}_{-0.21}$

Reduced scale uncertainty

NLO scale variations are about 28%, 19% and 14% of the LO scale uncertainty for 3, 4 and 5 jet cross-sections respectively

Cross-check at 7 TeV

Agreement with 4 jet results by BlackHat collaboration [Bern,Diana,Dixon,Febres Cordero,Hoeche,Kosower,Ita,Maitre,Ozeren] [arXiv:1112.3940]

NJet + Sherpa: 4 and 5 jets at 7 TeV, total XS scale variations

ROOT Ntuple format stores extra information, which allows to vary renormalization scale in the analysis

[SM and NLO Multileg WG Summary report 2010]

NJet + Sherpa: 4 and 5 jets at 7 TeV, p_T distributions

NJet + Sherpa: comparison with LHC jet measurements

23 / N

Summary

- NJet: numerical evaluation of one-loop amplitudes in massless QCD.
- General construction for primitive and partial amplitudes.
- Full colour results for ≤ 5 jets
- Binoth Les Houches Accord interface.
- NJet+Sherpa: 3 and 4 jets at NLO at 7 and 8 TeV [arXiv:1209.0098]
- ► NJet+Sherpa: First results for 5 jets.
- Publicly available from the NJet project page https://bitbucket.org/njet/njet

Bonus material

1. Generate all diagrams² D_i for a given *n*-parton amplitude \mathcal{A}_n

$$\mathcal{A}_n = \sum_{i=1}^{N_{\text{dia}}} D_i = \sum_{i=1}^{\hat{N}_{\text{dia}}} C_i K_i \qquad C_i = \sum_c T_c F_{ci}$$

2. Write all possible primitives P_i as combinations of colour-stripped diagrams K_i using matching matrix M_{ij}

$$\begin{split} P_{i} &= \sum_{j=1}^{\hat{N}_{\text{dia}}} M_{ij} K_{j} \qquad i \in \{1, 2, \dots, N_{\text{pri}}\} \qquad N_{\text{pri}} = N_{\text{pri}}^{[m]} + N_{\text{pri}}^{[f]} \\ N_{\text{pri}}^{[f]} &= (n-1)! \qquad N_{\text{pri}}^{[m]} = \begin{cases} (n-1)! & n_{q} = 0 \\ n_{q}(n-1)!/2 & n_{q} = 2, 4, \dots \end{cases} \end{split}$$

²only topologies are needed

N + 1 / N

Matching Matrix M_{ij}

colour ordered Feynman rules and the primitive in question.

Partial Amplitudes and Colour Summation

$$P_{i} = \sum_{j=1}^{\hat{N}_{\text{dia}}} M_{ij} K_{j} \qquad M_{ij} \in \{0, 1, -1\}$$

Number of **independent** primitive amplitudes (denoted \hat{P}_j)

$$\begin{split} \hat{N}_{\mathsf{pri}} &= \mathsf{rank}\,\mathbf{M} \\ \hat{N}_{\mathsf{pri}} &\leq (N_{\mathsf{pri}} = N_{\mathsf{rows}}) \quad \hat{N}_{\mathsf{pri}} \leq (\hat{N}_{\mathsf{dia}} = N_{\mathsf{cols}}) \end{split}$$

Reduced row echelon form of $\hat{\mathbf{M}} = [\mathbf{M}|{-}\mathbbm{1}]$

- upper \hat{N}_{pri} rows **solution** of K_j in terms of \hat{P}_i
- ▶ lower $N_{\rm pri} \hat{N}_{\rm pri}$ rows left null space of M (relations)

$$K_i = \sum_{j=1}^{\hat{N}_{\mathsf{pri}}} B_{ij} \hat{\underline{P}}_j \qquad \{\hat{P}_j\}_{\hat{N}_{\mathsf{pri}}} \subset \{P_j\}_{N_{\mathsf{pri}}}$$

Partial Amplitudes

Putting everything together

- Colour factors in terms of the colour "trace basis"
- Kinematic factors in terms of independent primitives

We obtain partial amplitudes in terms of a basis of independent primitive amplitudes \hat{P}_i for a given class of primitives

$$\mathcal{A}_n = \sum_c T_c \sum_{j=1}^{\hat{N}_{\mathsf{pri}}} Q_{cj} \hat{P}_j$$

N + 4 / N