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General path of the loop calculations

[Loop diagram calculation]
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General path of the loop calculations

[Loop diagram calculation]




Loop Integral

Lloop, E+1 legs

Loop integral

azl,,  d?i, .

_/ d7ly...d71I,
IO ..DWY

Dy,...,Dy — denominators of
the diagram,

Dyy1,...,Dy conveniently

chosen numerators.
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Loop Integral

Lloop, E+1 legs

Loop integral
a7l d7l
_/ d7ly...d71I,
IO ..DWY

Dy,...,Dy — denominators of
the diagram,

Dyy1,...,Dy conveniently
chosen numerators.

Notation
q,..=1l, 1

All Dy linearly depend on s;; = [; - gj, any s;; can be
expressed via Dy. = N =#s; =L(L+1)/2+LE qL+1,.L+E = D1,.E

[ = - = £ Qe



Operator representation

Operators 4

In order to write identities between integrals with different indices, it is
convenient to introduce the operators:
(Aof) (n1y...,nn) = ngf (n1,...,ng+1,...,05),
(Baf) (n1,...,nn) =f(n1,...,ng—1,...,ny).

Commutator

[Aq, Bg] = Oup J
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Operator representation

Operators Ay, ..., AN, B

In order to write identities between integrals with different indices, it is
convenient to introduce the operators:

(Aof) (n1y...,nn) = ngf (n1,...,ng+1,...,05),
(Baf)(nlv"'anl\’) :f(nla--- Ny

Commutator
1, cen ,I’lN) .
Compact form of identities

[Aq, Bg] = Oup J

nlJ(nl +1,n2) :J(nl,l’lz— 1)—|—J(n1,n2) — A J=ByJ+J
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Relations between the integrals

Symmetries

The symmetry relations arise from the shifts of loop momenta which map
denominators to denominators.

(|
OQPE OQPC OQPC




Relations between the integrals

IBP&LI identities

The integration-by-part identities arise due to the fact, that, in

dimensional regularization the integral of the total derivative is zero (Tkachov
1981, Chetyrkin and Tkachov 1981)

IBP identities

IBP operators
/d% ...d?1,04j(n) =0 (IBP) | O; = 5 -¢; J

(=] = = = DA



Relations between the integrals
IBP&LI identities

The integration-by-part identities arise due to the fact, that, in

dimensional regularization the integral of the total derivative is zero (Tkachov
1981, Chetyrkin and Tkachov 1981)
IBP identities

/d@ll...d@lLOijj( )=0

IBP operators
(IBP) | 0= 5 ¢ J

The Lorentz-invariance identities arise due to the fact that loop integrals

are scalar functions of the external momenta (Gehrmann and Remiddi 2000).

Lorentz generators
PluPZVM“VJ =0

M =¥ pl'd.] J

(LD
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Reduction and Calculation

Reduction not only reduces the number of integrals to be calculated. It also
allows one to obtain for the master integrals the closed systems of equations:

differential and/or difference. Solving these equations is often simpler then
the direct integration.

(=] = = = DA
NN .. oy powerful ool for e reducion | ACATZ0  8/23



Differential equations

Differentiating with respect to external parameter and performing IBP

reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

Differential equation

External parameter
d . P DE mass (Kotikov, 1991)
%J =/f(a)] +h(a). (DE) invariant of p, (Remiddi, 1997)
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Differential equations

Differentiating with respect to external parameter and performing IBP
reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

Differential equation External parameter

d . P DE B mass (Kotikov, 1991)
a_a‘] =f(a)J +h(a). (DE) | 5= 1 invariant of pe (Remiddi, 1997)

@ n-scale integrals (n > 2) can be investigated by the differential
equation method.
Initial conditions for the differential equation are put in the point where
the chosen parameter is expressed via the rest (or equal to 0,00) = The
problem is reduced to the calculation of integrals with n — 1 scales.
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Equations for the masters: differential and dimensional recurrences

Differential equations

Differentiating with respect to external parameter and performing IBP

reduction of the result, we obtain differential equation for a given master
integral(Kotikov 1991, Remiddi 1997).

External parameter

J P B mass (Kotikov, 1991)
557 =f@l+h(a). OE)FS=1 4 variantof p,  (Remiddi, 1997)

@ n-scale integrals (n > 2) can be investigated by the differential
equation method.
Initial conditions for the differential equation are put in the point where

the chosen parameter is expressed via the rest (or equal to 0,00) = The
problem is reduced to the calculation of integrals with n — 1 scales.

@ One-scale integrals have obvious dependence on this scale.
Differential equations cannot help.

(=] =y = na
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Dimensional recurrences

Dimesional recurrence relation (Tarasov 1996) relates integrals in d and

d+ 2 dimensions. For the integral without numerators, representable by a
graph, it reads:

Dimensional recurrence

J4 D m)=pty < I1 Ak> J9 (n).

trees \ chords

For automatic derivation of DRR it is convenient to use explicit formula
without any reference to a graph (see below).

Equation for the masters

N—

Reducing right-hand side, we obtain difference equations for the master.

=} F = = DA



Description of LiteRed

One more reduction package?

Many reduction packages on the market: FIRE, Reduze, etc., why creating
another?

@ The reduction is based on search of the universal rules, not on Laporta

algorithm. The rules can be then used in LiteRed itself, or other
programs.

@ The search of symmetries works very fast. It determines not only graphic
symmetries, but all shift symmetries.

@ The convenient tools for the construction of differential equations and
dimensional recurrence relations.

=} F = E DA



Installation

@ Download the archived package from it site:
http://www.inp.nsk.su/~lee/programs/LiteRed/

@ Unpack to your UserBaseDirectory/Applications, where
UserBaseDirectory can be determined by evaluating
$UserbaseDirectory in Mathematica session.

(=] = = = DA


http://www.inp.nsk.su/~lee/programs/LiteRed/

Example:Baikov&Chetyrkin integrals

Four-loop massless propagators (Baikov 2006, Baikov and Chetyrkin
2010)

- N - =13~
« . . AN
/s 8 \ A
14 w-4-5 12 < 14 5 8 12
; Ny \ i i
—t X —_— ) —_— i
| / ‘ ;
9. 6 7 11 9, 6 7 11 96 7 11
) w o’ » “e. e
10-77 ~-10--

SetDirectory[NotebookDirectory[l] (¥setting working directory*)
<<LiteRed‘ (*loading package*)

SetDim[d] ; (*dimension variablex*)

Declare[{11, 12, 13, 14, g}, Vector];(*¥11,12,13,14 --- loop momentax)
splq, ql = 1;(*q --- incoming momentum *)

NewBasis[p4, {14-q,14-12,12-13+14,11-12+13-14,14-11,11-12,12-13,
13-14,11+q,12+q,13+q,13,14,11},{11,12,13,14} ,Directory->p4 dir’”]
(*1st argument --- list of D;,2nd argument --- list of loop mom.,
‘“p4 dir”’ --- directory to save rules and morex)

=} F = E DA



Example:Baikov&Chetyrkin integrals

IBP generation

In[]:=GenerateIBP[p4]; (*generating ibp identities*)
Integration-By-Part&Lorentz-Invariance identities are generated.
IBP[p4] --- integration-by-part identities,
LI[p4] --- Lorentz invariance identities.
In[]:=IBP[p4][n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14]
(*print IBP relations*)
Out[]:=A very large output was generated. Here is a sample of it:
{n6 jlp4,n1,-1+n2,n3,n4,n5,1+n6,n7,n8,n9,n10,n11,n12,n13,n14]
+n6 jlp4,nl,n2,-1+n3,n4,n5,1+n6,n7,n8,n9,n10,n11,n12,n13,n14]
+<<17>>
-n4 j[p4,n1,n2,n3,1+n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,-1+n14],
<<19>>}

=} F = E DA



Example:Baikov&Chetyrkin integrals

Zero sectors search

In[]:=Timing[AnalyzeSectors[p4,{0,0,0,_ }I{0,0, , ,0,_ }I{0, ,0,0,_}];]
Found 2882 zero sectors out of 4096.

ZeroSectors[p4] --- zero sectors,

NonZeroSectors[p4] --- nonzero sectors,

SimpleSectors[p4] --- simple sectors (no nonzero subsectors),

BasisSectors[p4] --- basis sectors (at least one immediate subsect

ZerojRule[p4] --- a rule to nullify all zero jl[p4,...].
Out[]:={136, Null}
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Example:Baikov&Chetyrkin integrals

Zero sectors search

/ N\ N W i
107 107 107

In[]:=Timing[AnalyzeSectors[p4,{0,0,0,_ }I{0,0, , ,0,_ }I{0, ,0,0,_}];]
Found 2882 zero sectors out of 4096.

ZeroSectors[p4] --- zero sectors,

NonZeroSectors[p4] --- nonzero sectors,

SimpleSectors[p4] --- simple sectors (no nonzero subsectors),
BasisSectors[p4] --- basis sectors (at least one immediate subsect
ZerojRule[p4] --- a rule to nullify all zero jl[p4,...].

Out[]:={136, Null}

In version 1.3 the search is based on Feynman parameterization and works
flawlessly for all cases. In particular, the sectors containing massless onshell
propagators are now detected as zero.




Example:Baikov&Chetyrkin integrals

Symmetries search

In[]:=Timing[FindSymmetries[p4];]
Found 1110 mapped sectors and 104 unique sectors.

UniqueSectors[p4] --- unique sectors.
MappedSectors [p4] --- mapped sectors.
SRIp4l[...] --- symmetry relations for j[p4,...] from UniqueSector
jSymmetries[p4,...] --- symmetry rules for the sector js[p4,...] i
jRules[p4,...] --- reduction rules for j[p4,...] from MappedSector

OQut[]:={120, Null}

Algorithm

© The equivalent simple sectors are determined from FP (Very similar to
A. Pak’s TSort (Pak 2012))

@ The symmetries for simple sectors are determined from momenta shifts

© The symmetries for higher sectors are picked up from those of simple
sectors.

v



Example:Baikov&Chetyrkin integrals

Heuristic search for the reduction rules

In[]:=Timing[Solve jSector[UniqueSectors[p4],DiskSave->True]]
Sector js[p4,0,0,0,0,0,1,1,1,1,0,0,0,1,0]
Master integrals found: j[p4, 0, 0, 0, 0, O, 1, 1, 1, 1, 0, 0, O,
jRules[p4, 0o, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0] --- reduction
MIs[p4] --- updated list of the masters.
Sector js[p4,0,1,0,0,1,1,1,1,1,1,1,1,1,1]
Master integrals found: j[p4, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
Qut[]:={"35hours,{1,1,1,1,0,0,0,1,...0,1,1,1}}
(*output lists

jRules[p4, O, 1, 0, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] --- reduction
MIs[p4] --- updated list of the masters.

the number of masters in each sector#*)
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Example:Baikov&Chetyrkin integrals

Form and application of the found rules

In[]:=jRules[p4,0,1,0,0,1,1,1,1,1,1,1,1,1, 1]
{jlp4,n1_?NonPositive,n2_?NonPositive,n3_?NonPositive,n4_?Positive,
n5_?Positive,n6_?Positive,n7_?Positive,n8_?Positive,n9_?Positive,n10_?Positive,
nl1_?Positive,n12_?Positive,n13_?Positive,n14_?Positive]/;!(n1==0ln13==1)->
<<A8>>+<<1>>/<<1>>+((-1-n1) j[p4,<<14>>])/(-1+n13),<<127>>,
jlp4.n1_?NonPositive,<<11>>n13_?Positive,n14_?Positive]/;<<1>>-><<1>>}

In[]:=Timing[IBPReduce[j[p4, -1,0,0,1,1,1,1,1,1,1,1, 1, 1, 1]]]
{~20min, <<1>>}
(x%)
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Example:Baikov&Chetyrkin integrals

Aditional tools:differentiation

In[]:=Dinv[2¥j[p4, 0, 0,0, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1],splq,qll/ - splq,q]-
>1(xderivative d/dg>*)

Out[]:=
j[p4,0,-1,0,1,1,1,1,1,1,2,1,1,1,11+j[p4,0,0,-1,1,1,1,1,1,1,2,1,1,1,1]
-jl[p4,0,0,0,1,1,1,0,1,1,2,1,1,1,1]1-3[p4,0,0,0,1,1,1,1,0,1,2,1,1,1,1]
-3jlp4,0,0,0,1,1,1,1,1,1,1,1,1,1,1]+j[p4,0,0,0,1,1,1,1,1,1,1,2,0,1,1]
-j[p4,0,0,0,1,1,1,1,1,1,1,2,1,1,1]1+j[p4,0,0,0,1,1,1,1,1,1,2,1,0,1,1]
-j[p4,0,0,0,1,1,1,1,1,1,2,1,1,0,1]1-j[p4,0,0,0,1,1,1,1,1,1,2,1,1,1,1]
+j[p4,0,0,0,1,1,1,1,1,2,1,1,1,1,0]-j[p4,0,0,0,1,1,1,1,1,2,1,1,1,1,1]
In[]:=IBPReduce[ %]

Out[]:=(4d-22)*j[p4,0,0,0,1,1,1,1,1,1,1, 1, 1, 1, 1]

(##)
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Example:Baikov&Chetyrkin integrals

The algorithm for dimensional recurrence relations

LiteRed uses

J(d+2) (n) (2

Lowering&Raising DRR from Baikov’s formula (Lee 2010

-1
Ii)L [V(p17"'7pE)] (d)
= P(By,...,By)J . LDRR
F—E-L+1), BB/ T @) (LDRR)
J=2) (n) = uldet Z a—Ak J9 (n). (RDRR)
Sij ij=1,..L
Work fine for the integrals with numerators, for non-standard denominators
and for non-graphical integrals
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Example:Baikov&Chetyrkin integrals

Aditional tools:dimensional recurrences

In[]:=RaisingDRR[p4,0,0,0,1,1,1,1,1,1,1,1,1,1, 1]
(*right-hand side of the raising DRR*)
Out[]:=
j[p4,0,0,0,1,1,1,1,1,1,2,1,2,2,2]+j[p4,0,0,0,1,1,1,1,1,1,2,2,1,2,2]
+j[p4,0,0,0,1,1,1,1,1,2,2,1,2,2,1]1+j[p4,0,0,0,1,1,1,1,1,2,2,2,1,2,1]
+<<161>>+j[p4,0,0,0,2,2,2,1,1,1,1,2,1,1,1]

1,1,1

2
+j[p4,0,0,0,2,2,2,1,1,1,2,1,1,1,11+j[p4,0,0,0,2,2,2,1,1,2,1,1,1,1,1]

(=] = = = DA



Example:Baikov&Chetyrkin integrals

Aditional tools:dimensional recurrences

In[]:=RaisingDRR[p4,0,0,0,1,1,1,1,1,1,1,1,1,1, 1]

(*right-hand side of the raising DRR*)

Qut[]:=
j[p4,0,0,0,1,1,1,1,1,1,2,1,2,2,2]+j[p4,0,0,0,1,1,1,1,1,1,2,2,1,2,2]
+j[p4,0,0,0,1,1,1,1,1,2,2,1,2,2,1]+j[p4,0,0,0,1,1,1,1,1,2,2,2,1,2,1]
+<<161>>+j[p4,0,0,0,2,2,2,1,1,1,1,2,1,1,1]
+j[p4,0,0,0,2,2,2,1,1,1,2,1,1,1,1]+j[p4,0,0,0,2,2,2,1,1,2,1,1,1,1,1]
In[]:=Timing[IBPReduce[%]]

Out[]:={~2.5hours, <<1>>}

(**)
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Summary

@ LiteRed is publicly available from
http://wuw.inp.nsk.su/~lee/programs/LiteRed/

@ LiteRed implements a new approach to the reduction: heuristic
search+application.

@ The rules found can be reused and shared (see ready-to-use bases on
package web site).

@ The results obtain in LiteRed can be used in other programs to
dramatically extend their limits (import already implemented in FIRE by
A. Smirnov and V. Smirnov).

@ [iteRed also contains some convenience tools, like constrution of the
differential and DRR equations.

@ Outlook: FP-based search of the symmetries

@ Outlook: major improvements in the heuristic search
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