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Motivation

Motivation

Analytic Perturbation Theory (APT) [Shirkov, Solovtsov (1996,1997)]

Fractional Analytic Perturbation Theory (FAPT) [Bakulev, Mikhailov, Stefanis
(2005-2010)], [Bakulev, Karanikas, Stefanis (2007)]

APT and FAPT:

Closed theoretical scheme without singularities and additional parameters;

RG-invariance, Q2-analyticity;

Power PT set in MS-scheme {ᾱk
s (Q2)} ⇒ a non-power APT expansion set Āk(Q2)

in Euclidian domain and Āk(s) in Minkowskian domain with both Āk(Q2) and
Āk(s) regular in the IR region.

ᾱk
s → Āk , Āk∑

dk ᾱ
k
s →

∑
dkĀk ,

∑
dk Āk

dk − numbers

Functions Āk(Q2) and Āk(s) cannot be trivial calculated in higher orders.
The main our goal is to simplify the calculations in framework of APT&FAPT.
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Introduction

Introduction

This talk is based on recent publication A.P. Bakulev and V.L. Khandramai Comp. Phys.
Comm. 184 (2013) 183-193. All relevant formulas which are necessary for the running of
Āν [L], L = ln(Q2/Λ2) and Āν [Ls ], Ls = ln(s/Λ2) in Minkowskian domain in framework of
FAPT are collected.

We provide here easy-to-use Mathematica system procedures collected in the
package “FAPT”

Our package is organized as well-known package RunDec [Chetyrkin, Kühn,
Steinhauser (2000)]

This task has been partially realized for APT as the Maple package QCDMAPT and
as the Fortran package QCDMAPT_F [Nesterenko, Simolo (2010)]

Outline:

1 Theoretical framework: from standard PT to Analytic Perturbation Theory and its
generalization – Fractional APT;

2 APT/FAPT Applications: Bjorken sum rule and RG-evolution;

3 Package “FAPT”: description of procedures and examples of usage.
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Theoretical Framework Standrad PT

Theoretical Framework
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Theoretical Framework Standrad PT

Running coupling

The QCD running of the coupling constant αs(µ2) = (4π/b0) as [L] is defined through RG
equation

d as [L]

d L
= −a2

s − c1 a3
s − c2 a4

s − c1 a3
s − . . . , L = ln

(
µ2

Λ2

)
, ck(nf ) ≡ bk(nf )

b0(nf )k+1 .

The solutions of RG equation in MS-scheme can be obtained exactly at LO and NLO

a(1)s [L] =
1
L

; (LO)

a(2)s [L; nf ] =
−c−1

1 (nf )

1 + W−1 (zW [L])
with zW [L] = −c−1

1 (nf ) e−1−L/c1(nf ) . (NLO)

The higher-order solutions a(`)s [L; nf ] can be expanded in powers of the two-loop one,
a(2)s [L; nf ], it has been suggested in [Kourashev, Magradze, (1999-2003)]:

a(`)s [L; nf ] =
∑
n≥1

C (`)
n

(
a(2)s [L; nf ]

)n
.
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Theoretical Framework Standrad PT

Heavy quark mass thresholds

For realization of so-called “global scheme” it needs to match the running coupling values
in Euclidian domain at Q corresponding to quark masses:

α(`)
s [L4(Λ3); 3] = α(`)

s [L4(Λ3) + λ4; 4] ;

α(`)
s [L5(Λ3) + λ4; 4] = α(`)

s [L5(Λ3) + λ5; 5] ;

α(`)
s [L6(Λ3) + λ5; 5] = α(`)

s [L6(Λ3) + λ6; 6] ;

where Lk(Λ3) ≡ ln
(
M2

k/Λ2
3
)
at the thresholds Mk (M4 = mc , M5 = mb and M6 = mt).

We use all logarithms L with depending of three-flavor scale QCD Λ3:

αglob;(`)
s (Q2,Λ3) = α(`)

s
[
L(Q2); 3

]
θ
(
Q2<M2

4
)

+ α(`)
s

[
L(Q2)+λ

(`)
4 (Λ3); 4

]
θ
(
M2

4 ≤Q2 <M2
5
)

+ α(`)
s

[
L(Q2)+λ

(`)
5 (Λ3); 5

]
θ
(
M2

5 ≤Q2 <M2
6
)

+ α(`)
s

[
L(Q2)+λ

(`)
6 (Λ3); 6

]
θ
(
M2

6 ≤Q2) ,
and recalculate α(`)

s to all other scales with the help of finite additions λk ≡ ln
(
Λ2

3/Λ2
k
)
.
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Theoretical Framework Standrad PT

Why we need APT and FAPT?

For standard QCD PT in Euclidian domain the expressions for hadronic quantities
F
(
Q2 = µ2, ās

)
are based on expansions in a series over the powers of running coupling

F [L] = 1 + f1 ās [L] + f2 ā2
s [L] + f3 ā3

s [L] + f4 ā4
s [L] + . . ..

Hadronic quantities calculated in terms of a power-series are not everywhere well defined
because of unphysical coupling singularities: ā(1)s [L] = 1/L, ā(2)s [L] ∼ 1/

√
L + c1lnc1,...

In standard QCD PT we have not only power series but also:

RG-improvement to account for higher-orders →

Z [L] = exp
{∫

γ(a)

β(a)
da
}

1-loop−→ [ās [L]]γ0/(2β0) ;

Factorization → (ās [L])n Lm;

Two-loop case → (ās)ν ln(ās).
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Theoretical Framework Standrad PT

Basics of APT

The analytic images of the strong coupling powers:

ān Euclidian−→ Ā(`)
n [L; nf ]=

∫ ∞
0

ρ̄
(`)
ν (σ; nf )

σ + Q2 dσ , ān Minkowskian−→ Ā(`)
n [Ls ; nf ]=

∫ ∞
s

ρ̄
(`)
n (σ; nf )

σ
dσ

are defined through the spectral density

ρ̄(`)n [L; nf ] =
1
π
Im
(
ᾱ(`)

s [L− iπ; nf ]
)n

.

Leading order (integer powers):

ρ̄
(1)
1 (σ) =

4
b0

Im
1

Lσ − iπ
=

4π
b0

1
L2
σ + π2 .

A(1)
1 [Shirkov, Solovtsov (1996, 1997)] and A

(1)
1 [Jones, Solovtsov (1995); Jones,

Solovtsov, Solovtsova (1995); Milton, Solovtsov (1996)]:

Ā(1)
1 [L] =

4π
b0

(
1
L
− 1

eL − 1

)
, L = ln

(
Q2/Λ2) ;

Ā
(1)
1 [Ls ] =

4
b0

arccos
(

Ls√
L2

s + π2

)
, Ls = ln

(
s/Λ2) .
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Theoretical Framework Standrad PT

APT Running Coupling

All APT couplings have the following properties:

Universal finite IR values: Ā(0) = Ā(0) = 4π/b0;

Week dependence on the number of loops;
Correspondence with perturbative ᾱs(Q2) at Q2 � 1 GeV2.
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Theoretical Framework FAPT

FAPT: one-loop Euclidian Āν [L]

Euclidian coupling:

Ā(1)
ν [L] =

4π
b0

[
1
Lν
− F (e−L, 1− ν)

Γ(ν)

]
, L = ln

(
Q2

Λ2

)
.

F (z , ν) is Lerch transcendent function.

Properties:

Ā0[L] = 1;

Ā−m[L] = Lm for m ∈ N;

Ām[L] = (−1)mĀm[−L]

for m ≥ 2 , m ∈ N;

Ām[±∞] = 0 for m ≥ 2 , m ∈ N. L

Ν=2.25
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Ν=2
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H1L
__
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Theoretical Framework FAPT

FAPT: one-loop Minkowskian Āν [L]

Minkowskian coupling:

Ā(1)
ν [L] =

4
b0

sin
[
(ν − 1)arccos

(
L/
√
π2 + L2

)]
(ν − 1) (π2 + L2)(ν−1)/2 , Ls = ln

( s
Λ2

)
.

Here we need the elementary functions only.

Properties:

Ā0[L] = 1; Ā−1[L] = L;

Ā−2[L] = L2 − π2

3
, Ā−3[L] =

L
(
L2 − π2) , . . . ;

Ām[L] = (−1)mĀm[−L] for
m ≥ 2 , m ∈ N;

Ām[±∞] = 0 for m ≥ 2 , m ∈ N.
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APT/FAPT Applications

APT/FAPT Applications
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APT/FAPT Applications

Non-power APT expansions

The polarized Bjorken Sum Rule is given by a sum of two series in powers of αs and OPE
higher twists corrections µp−n

2i :

Γp−n
1 (Q2) =

|gA|
6

CBj +
∞∑
i=2

µp−n
2i

Q2i−2 ,

CBj(Q2) ≡ 1−∆Bj(Q2) , |gA| = 1.2701± 0.0025 .

Perturbative power-correction:
[Baikov, Chetyrkin, Kühn (2010)]

∆PT
Bj (Q2) = 0.318 ᾱs(Q2) + 0.363 ᾱ2

s (Q2) + 0.652 ᾱ3
s (Q2) + 1.804 ᾱ4

s (Q2) + ...

Instead of universal power-in-αs expansion in APT one should use non-power
functional expansions:

∆APT
Bj (Q2) = 0.318Ā1(Q2) + 0.363Ā2(Q2) + 0.652Ā3(Q2) + 1.804Ā4(Q2) + ...
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APT/FAPT Applications Loop stabilization

Loop stabilization

The Γp−n
1 (Q2) (with HT=0) in both the standard PT and APT approaches with the

combined set of the Jefferson Lab and SLAC data.
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The behavior of the PT curves is changed order by order.
The APT curves in all three orders practically coincide with each other.
The deviation of the APT curves from the data shows for necessity of the
higher-twist contribution.
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APT/FAPT Applications Convergence

Convergence

The relative contributions of separate terms in PT and APT expansions for ∆Bj(Q2),
Ni (Q2) = δi (Q2)/∆Bj(Q2), as a functions of Q2 from [Khandramai et. al (2012)]342 V.L. Khandramai et al. / Physics Letters B 706 (2012) 340–344

Fig. 2. The Q 2-dependence of the relative contributions at the four-loop level in the
PT approach. Four-loop PT order overshoots the three-loop one at Q 2 � 2 GeV2, so
it does not improve the accuracy of the PT prediction compared to the three-loop
one.

same time, the deviation of APT curve from the data clearly shows
for necessity of the HT contribution which is also quite stable [4].

This situation may be considered as a hint of the transition of
PT series to the asymptotic regime (while APT series remains con-
vergent) for Q 2 ∼ 0.7 GeV2. We explore this possibility in more
detail.

2.3. Convergence of the PT and APT expansions

Clearly, at low Q 2 a value of the strong coupling is quite large,
questioning the convergence of perturbative QCD series. The PT
power series up to the known four-loop term (cf. Eq. (3)) reads

ΔPT
Bj (αs) = 0.3183αs + 0.3631α2

s + 0.6520α3
s + 1.804α4

s

=
∑
i�4

δi(αs), (7)

where δi is the i-th term. The quantitative resemblance of the co-
efficients rise to the factorial growth ck ∼ c1(k − 1)! is evident
although for a definite statement one requires more deep analy-
sis. This observation allows one to estimate the value α∗

s ∼ 1/3 as
a critical one (δ3(α

∗
s ) � δ4(α

∗
s )).

To test that, we present in Fig. 2 the relative contributions of
separate terms in the four-loop expansion (7)

Ni
(

Q 2) = δi
(

Q 2)/ΔBj
(

Q 2). (8)

As it is seen from Fig. 2, in the region Q 2 < 1 GeV2 the dom-
inant contribution to the pQCD correction, comes from the four-
loop term ∼ α4

s ; its relative contribution increases with decreasing
Q 2. This may be considered as an extra argument supporting an
asymptotic character of the PT expansion in this region.

In the region Q 2 > 2 GeV2 the situation is reverse – the major
contribution comes from one- and two-loop orders there. Analo-
gous curves for the APT series given by Eq. (5) are presented in
Fig. 3.

Figs. 2 and 3 demonstrate the essential difference between the
PT and APT cases, namely, the APT expansion converges much bet-
ter than the PT one. In the APT case, the higher order contributions
are stable at all Q 2 values, with the one-loop contribution giving
about 70%, two-loop – 20%, three-loop – not exceeding 5%, and
four-loop – up to 1%. The four-loop APT term can be important,
only if the theoretical accuracy to better than 1% will be actual.

Fig. 3. The Q 2-dependence of the relative contributions of the perturbative expan-
sion terms in Eq. (5) in the APT approach. Third and fourth order contributions
amount to less than 5% total, so the NLO APT approximation is sufficient for de-
scription of the low energy JLab data at the current level of experimental accuracy.

Fig. 4. The μ-scale ambiguities for the perturbative part of the BSR versus Q 2 for
three- (shaded region between dash-dot-dotted and dashed curves) and four-loop
(shaded region between short-dashed and dash-dotted curves) orders of pQCD re-
lated to xμ in the interval 0.5–2. These two regions have similar widths and only
slightly shifted w.r.t. each other, so the differences between three- and four-loop re-
sults are within the data error bars. Hence, in the PT case, the N3LO approximation
does not improve the data description compared to the N2LO one (see also Fig. 2).

2.4. The μ-scale dependence

As it is known, any observable obtained to all orders in pQCD
expansion should be independent of the normalization scale μ, but
in any truncated-order perturbative series the cancellation is not
perfect, such that the pQCD predictions do depend on the μ-scale
choice (for a fresh review, see Ref. [20]).

In order to estimate this μ-dependence of Γ
p−n

1 we use the
four-loop expression for the coefficient function CBj(μ

2/Q 2) [6].
One commonly introduce the dimensionless parameter xμ (μ2 =
xμ Q 2), which we have chosen to change within the interval xμ =
0.5–2 (see, for example, the analysis in Ref. [23]), and compare the
μ-scale ambiguities for the three- and four-loop PT expressions.

In Fig. 4, the perturbative part of the BSR is plotted as a func-
tion of Q 2 in three- and four-loop PT orders corresponding to
xμ in the interval 0.5–2. The width of the arising strip for the
four-loop expression is close to the one for the three-loop ap-
proximation in the highest JLab region Q 2 ∼ 3 GeV2,1 so these

1 One can find that an account for four-loop contribution leads to a decrease of

the μ-dependence if Q 2 � 5 GeV2 which is currently outside the JLab kinematical
range, but will be accessible by JLab after the scheduled upgrade.
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Fig. 2. The Q 2-dependence of the relative contributions at the four-loop level in the
PT approach. Four-loop PT order overshoots the three-loop one at Q 2 � 2 GeV2, so
it does not improve the accuracy of the PT prediction compared to the three-loop
one.

same time, the deviation of APT curve from the data clearly shows
for necessity of the HT contribution which is also quite stable [4].

This situation may be considered as a hint of the transition of
PT series to the asymptotic regime (while APT series remains con-
vergent) for Q 2 ∼ 0.7 GeV2. We explore this possibility in more
detail.

2.3. Convergence of the PT and APT expansions

Clearly, at low Q 2 a value of the strong coupling is quite large,
questioning the convergence of perturbative QCD series. The PT
power series up to the known four-loop term (cf. Eq. (3)) reads

ΔPT
Bj (αs) = 0.3183αs + 0.3631α2

s + 0.6520α3
s + 1.804α4

s

=
∑
i�4

δi(αs), (7)

where δi is the i-th term. The quantitative resemblance of the co-
efficients rise to the factorial growth ck ∼ c1(k − 1)! is evident
although for a definite statement one requires more deep analy-
sis. This observation allows one to estimate the value α∗

s ∼ 1/3 as
a critical one (δ3(α

∗
s ) � δ4(α

∗
s )).

To test that, we present in Fig. 2 the relative contributions of
separate terms in the four-loop expansion (7)

Ni
(

Q 2) = δi
(

Q 2)/ΔBj
(

Q 2). (8)

As it is seen from Fig. 2, in the region Q 2 < 1 GeV2 the dom-
inant contribution to the pQCD correction, comes from the four-
loop term ∼ α4

s ; its relative contribution increases with decreasing
Q 2. This may be considered as an extra argument supporting an
asymptotic character of the PT expansion in this region.

In the region Q 2 > 2 GeV2 the situation is reverse – the major
contribution comes from one- and two-loop orders there. Analo-
gous curves for the APT series given by Eq. (5) are presented in
Fig. 3.

Figs. 2 and 3 demonstrate the essential difference between the
PT and APT cases, namely, the APT expansion converges much bet-
ter than the PT one. In the APT case, the higher order contributions
are stable at all Q 2 values, with the one-loop contribution giving
about 70%, two-loop – 20%, three-loop – not exceeding 5%, and
four-loop – up to 1%. The four-loop APT term can be important,
only if the theoretical accuracy to better than 1% will be actual.

Fig. 3. The Q 2-dependence of the relative contributions of the perturbative expan-
sion terms in Eq. (5) in the APT approach. Third and fourth order contributions
amount to less than 5% total, so the NLO APT approximation is sufficient for de-
scription of the low energy JLab data at the current level of experimental accuracy.

Fig. 4. The μ-scale ambiguities for the perturbative part of the BSR versus Q 2 for
three- (shaded region between dash-dot-dotted and dashed curves) and four-loop
(shaded region between short-dashed and dash-dotted curves) orders of pQCD re-
lated to xμ in the interval 0.5–2. These two regions have similar widths and only
slightly shifted w.r.t. each other, so the differences between three- and four-loop re-
sults are within the data error bars. Hence, in the PT case, the N3LO approximation
does not improve the data description compared to the N2LO one (see also Fig. 2).

2.4. The μ-scale dependence

As it is known, any observable obtained to all orders in pQCD
expansion should be independent of the normalization scale μ, but
in any truncated-order perturbative series the cancellation is not
perfect, such that the pQCD predictions do depend on the μ-scale
choice (for a fresh review, see Ref. [20]).

In order to estimate this μ-dependence of Γ
p−n

1 we use the
four-loop expression for the coefficient function CBj(μ

2/Q 2) [6].
One commonly introduce the dimensionless parameter xμ (μ2 =
xμ Q 2), which we have chosen to change within the interval xμ =
0.5–2 (see, for example, the analysis in Ref. [23]), and compare the
μ-scale ambiguities for the three- and four-loop PT expressions.

In Fig. 4, the perturbative part of the BSR is plotted as a func-
tion of Q 2 in three- and four-loop PT orders corresponding to
xμ in the interval 0.5–2. The width of the arising strip for the
four-loop expression is close to the one for the three-loop ap-
proximation in the highest JLab region Q 2 ∼ 3 GeV2,1 so these

1 One can find that an account for four-loop contribution leads to a decrease of

the μ-dependence if Q 2 � 5 GeV2 which is currently outside the JLab kinematical
range, but will be accessible by JLab after the scheduled upgrade.

Asymptotic structure manifestation: in the region Q < 1 GeV the dominant
contribution to the PT correction comes from the α4

s -term; its relative contribution
increases with decreasing Q.

Good loop convergence in APT: the higher order contributions are stable at all Q2

values; the 3rd and 4th terms contribute less than 5% and 1% respectively.
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APT/FAPT Applications The RG evolution of the higher-twist µ
p−n
4 (Q2)

The RG evolution of the higher-twist µp−n
4 (Q2)

See [Pasechnik et al. (PRD,2010)]

The expression for the evolution of the higher twist µp−n
4 in the Bjorken sum rule is

known:

µp−n
4,PT(Q2) = µp−n

4,PT(Q2
0 )

[
αs(Q2)

αs(Q2
0 )

]ν
, ν =

γ0

8πβ0
, γ0 =

16
3
CF , CF =

4
3
.

For the RG-evolution of the µp−n
4 in the Fractional APT we need change the fractional

powers of the QCD running coupling constant by the corresponding analytic images:

µp−n
4,APT(Q2) = µp−n

4,APT(Q2
0 )
A(1)
ν (Q2)

A(1)
ν (Q2

0 )
.

Note, at the same time the evolution of the higher twist µp−n
6 , µp−n

8 , ... is still unknown.
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APT/FAPT Applications The RG evolution of the higher-twist µ
p−n
4 (Q2)

The RG evolution of the higher-twist µp−n
4 (Q2)

The Q2-dependence of evolution factors in the standard PT and Fractional APT.

Μ4
p-nHQ2L

Μ4
p-nHQ0

2L

APT
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The influence of non-physical singularities complicate the analysis of the higher-twist
evolution in the low-energy region of the standard PT.

The evolution from 1 GeV2 to Λ2
QCD in the APT increases the absolute value of

µp−n
4 (normalized at Q2

0 = 1 GeV2) by about 20 %.
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APT/FAPT Applications The RG evolution of the higher-twist µ
p−n
4 (Q2)

The RG evolution of the higher-twist µp−n
4 (Q2)

Using the above-mentioned total APT expressions for Bjorken sum rule fitted to
experimental data we extract the coefficients of the higher twist µ4 OPE corrections
without and with their RG-evolution.

Method Q2
min GeV2 µ4/M2 µ6/M4 µ8/M6

0.47 -0.055(3) - -
NNLO APT 0.17 -0.062(4) 0.008(2) -
no evolution 0.10 -0.068(4) 0.010(3) -0.0007(3)

0.47 -0.051(3) - -
NNLO APT 0.17 -0.056(4) 0.0087(4) -
with evolution 0.10 -0.058(4) 0.0114(6) -0.0005(8)

Note, we do not study account RG-evolution for the PT calculations since the only effect
of that would be the enhancement of the Landau singularities by extra divergences at
ΛQCD , whereas at higher Q2 the evolution is negligible.

Extracted values of µp−n
4 in APT become more stable with respect to Qmin

variations.
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APT/FAPT Applications Higher twist analysis

Higher twist analysis

The three-parametric (µ4 + µ6 + µ8)-fits of the Bjorken SR data in various orders of the
PT and the all-order APT.
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Figure 5: The one-parametric µ4-fits of the BSR JLab data in var-
ious (NLO, N2LO, N3LO) orders of the PT and the all-order APT
expansions. In the PT case, the four-loop result does not improve
the data description compared to the three-loop one. In the APT
case, the NLO approximation is sufficient due to higher-loop stability
of the APT expansion (see also Fig. 3).
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Figure 6: The three-parametric µ4,6,8-fits of the BSR JLab data in
various (NLO, N2LO, N3LO) orders of the PT and the all-order APT
expansions.

3.2. Sensitivity of the higher twists to ΛQCD variations

In the above analysis, we normalized αs at the Z-boson
mass scale and then fixed the value of the Λ parameter
separately in each order in αs approximation (it was suffi-
cient for understanding the role of the fourth order in the
PT/APT perturbative series). However, the correspond-
ing values of the Λ parameter extracted in this way may
be different from ones obtained in the direct QCD analysis
of the experimental data on the moments of the structure
functions (see, e.g., Ref. [26]). Having this in mind, we in-
vestigate additionally the sensitivity of the extracted val-
ues of the higher twist term µ4 to the QCD scale parameter
Λ in various orders of PT. In the framework of APT, the
sensitivity of µ4 to the Λ parameter is weak, and it does
not depend on the order of the loop expansion. Corre-

Table 1: Results of higher twist extraction from the JLab data on
BSR in various (NLO, N2LO, N3LO) orders of PT and all orders of
APT.

Method Q2
min, µ4/M

2 µ6/M
4 µ8/M

6

The best µ4-fit results

PT NLO 0.5 −0.028(5) − −
PT N2LO 0.66 −0.014(7) − −
PT N3LO 0.71 0.006(9) − −
APT 0.47 −0.050(4) − −

The best µ4,6,8-fit results

PT NLO 0.27 −0.03(1) −0.01(1) 0.008(4)

PT N2LO 0.34 0.01(2) −0.06(4) 0.04(2)

PT N3LO 0.47 0.05(4) −0.2(1) 0.12(6)
APT 0.08 −0.061(4) 0.009(1) −0.0004(1)

spondingly, the values of the higher twist coefficients turn
out to be considerably more precise than those extracted
in the PT approach (see also Table 1).
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Figure 7: Value of the higher twist coefficient µ4 extracted from the
JLab data using the PT at different orders at Q2

min = 0.66 GeV2

with error bands. Vertical lines denote the corresponding uncer-
tainty ranges in Λ-parameter. The ranges corresponding to N2LO
and N3LO approximations have similar sizes and overlap with each
other, so the four-loop result does not improve the stability w.r.t. Λ
variations compared to the three-loop one.

In Fig. 7 we show values of the coefficient µ4 extracted
from the JLab data using two-, three- and four-loop PT at
Q2

min = 0.66 GeV2 vs the parameter Λ. One can see that
the PT does not lead to a stable result for extracted µ4

value with respect to Λ variations. The extracted higher
twist coefficient µ4 changes quite strongly between differ-
ent orders of the PT expansion. And it happens in both
in absolute value and sign, namely, at Λ > 320 MeV the
higher twist coefficient becomes positive in the four-loop
PT order. This sensitivity of the higher twist term µ4 to
variations of the Λ becomes stronger at higher PT orders.

On the other hand, these data tell us that the abso-
lute value of µ4 decreases with the order of PT and just

5

The APT application leads to accurate data description down to Q2 ∼ 0.1 GeV2

always at the two-loop APT level.
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“FAPT” package

Package “FAPT”
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“FAPT” package “FAPT” package review

“FAPT” package review

Title of program: FAPT

Available from:
http://theor.jinr.ru/˜bakulev/fapt.mat/FAPT.m
http://theor.jinr.ru/˜bakulev/fapt.mat/FAPT_Interp.m

Computer: Any work-station or PC where Mathematica is running.

Operating system or monitor under which the program has been tested:
Mathematica (versions 5,7,8).

“FAPT” package contains the calculations of the required objects:

1 ᾱ(`)
s [L, nf ], ᾱ(`);glob

s

2 ρ̄(`)[Lσ, nf , ν], ρ(`);glob[Lσ, ν,Λnf =3]

3 Ā(`)
ν [L, nf ], A(`);glob

ν [L, ν,Λnf =3]

4 Ā(`)
ν [L, nf ], A(`);glob

ν [L, ν,Λnf =3]
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“FAPT” package Numerical parameters

Numerical parameters

The pole masses of heavy quarks and Z -boson, collected in the set NumDefFAPT
(all mass variables and parameters are measured in GeVs):

MQ4 : Mc = 1.65 GeV , MQ5 : Mb = 4.75 GeV ;
MQ6 : Mt = 172.5 GeV , MZboson : MZ = 91.19 GeV .

*The package RunDec is using the set NumDef with slightly different values of
these parameters (Mc = 1.6 GeV, Mb = 4.7 GeV, Mt = 175 GeV, MZ = 91.18
GeV).

Collection in the set setbetaFAPT the following rules of substitutions bi → bi (nf )

b0 : b0 → 11− 2
3
nf , b1, b2, b3.

*Here we follow the same substitution strategy as in RunDec, but our bi differ
from bRunDec

i by factors 4i+1: bi = 4i+1 bRunDec
i .
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“FAPT” package “FAPT” package: αs

αs calculations

\[CapitalLambda]`[Λ3, nf ] returns `-loop QCD scales with nf active quarks by using
matching conditions and three-flavors QCD scale Λ3:

\[CapitalLambda]`[Λ, k] = Λ`[Λ3, nf = k] = Λ
(`)
k (Λ3) , (` = 1÷ 4 ; k = 2, 4÷ 6) ,

\[Alpha]Bar`[Q2, nf ,Λ] returns `-loop running QCD couplings at scale Q2 with fixed nf

and QCD scale Λ:

\[Alpha]Bar`[Q2, nf ,Λ] = αBar`[Q2, nf ,Λ] = ᾱ(`)
s [ln(Q2/Λ2); nf ], (` = 1÷ 4)

\[Alpha]Glob`[Q2,Λ3] returns global `-loop QCD coupling at scale Q2 and QCD scale
Λ3, corresponds to nf = 3:

\[Alpha]Glob`[Q2,Λ3] = αGlob`[Q2,Λ3] = αglob;(`)
s (Q2,Λ3) , (` = 1÷ 4)
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“FAPT” package Example 1 (for Standard PT)

Example 1 (for Standard PT)

We assume that the three-loop QCD scale is fixed at the value Λ3 = 0.387 GeV. We want
to evaluate the corresponding values of αglob;(`)

s (Q2,Λ) at the scale Q = 4 GeV.

I n [ 1 ] := S e tD i r e c t o r y [ NotebookD i r e c to r y [ ] ] ;
<< FAPT.m
<< RunDEC .m

In [ 2 ] := L33=0.387;
I n [ 3 ] := Q1=4;
I n [ 4 ] := A=\[Alpha ] Glob3 [Mb^2 , L33 ]
Out [4]= 0.2383

−−−−−−−TEST with RunDEC−−−−−−−
WE USE OBTAINED RESULT AS INITIAL VALUE FOR AsRunDec
In [ 5 ] := Q2=10;

I n [ 6 ] := {\ [ Alpha ] Glob3 [Q2^2 , L33 ] , AsRunDec [A,Q1 ,Q2 , 3 ] }
Out [6]= {0 .1837 , 0 .1846} −>>> ERROR LESS THEN 0.5%
DUE TO SMALL DIFFERENCE IN POLE QUARK MASSES
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“FAPT” package ρν calculations

ρν calculations

RhoBar`[L, nf , ν] returns `-loop spectral density ρ̄(`)ν of fractional-power ν at
L = ln(Q2/Λ2) and at fixed number of active quark flavors nf :

RhoBar`[L, k, ν] = ρ̄(`)ν [L; nf = k] , (` = 1÷ 4)

RhoGlob`[L, ν,Λ3] returns the global `-loop spectral density ρ̄(`);glob
ν [L; Λ3] of

fractional-power ν at L = ln(Q2/Λ2
3) and with Λ3 corresponds to nf = 3:

RhoGlob`[L, ν,Λ3] = ρ̄(`);glob
ν [L; Λ3] , (` = 1÷ 4)

I n [ 7 ] := Show [
P lo t [ RhoGlob3 [ L , 1 , 0 . 3 8 7 ] ,
{L , −14, 10} ,
P l o t S t y l e −> {Thick , Red } ] ,
P l o t [ RhoBar3 [ L , 3 , 1 ] ,
{L , −14, 10} ,
P l o t S t y l e −> {Thick , Dashed ,
Blue } ] ]

Out [7]= see i n F ig . r i g h t

Ρ 1
glob;H1L[L]

Ρ 1.5
glob;H1L[L]

L

-10 -5 0 5 10
-0.10

-0.05

0.00

0.05

0.10

0.15
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“FAPT” package Aν and Aν calculations

Āν and Āν calculations

AcalBar`[L, nf , ν] returns `-loop analytic image of fractional-power ν coupling Ā(`)
ν [L; nf ]

in Euclidian domain,

AcalBar`[L, k, ν] = Ā(`)
ν [L; nf = k] , (` = 1÷ 4)

AcalGlob`[L, ν,Λ3] returns `-loop analytic image of fractional-power ν coupling
A(`);glob
ν [L,Λ3] in Euclidean domain

AcalGlob`[L, ν,Λ3] = A(`);glob
ν [L,Λ3] , (` = 1÷ 4)

UcalBar`[L, nf , ν] returns `-loop analytic image of fractional-power ν coupling Ā(`)
ν [L, nf ]

in Minkowskian domain

UcalBar`[L, k, ν] = Ā(`)
ν [L; nf = k] , (` = 1÷ 4)

UcalGlob`[L, ν,Λ3] returns `-loop analytic image of fractional-power ν coupling
A(`);glob
ν [L,Λ3] in Minkowskian domain

UcalGlob`[L, ν,Λ3] = A(`);glob
ν [L,Λ3] , (` = 1÷ 4)
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“FAPT” package Example 2 (for FAPT)

Example 2 (for FAPT)

Construction of a two plot of A(2);glob
ν [L, L23APT] and A(2);glob

ν [L, L23APT] for
L ∈ [−3, 11] with indication of the needed time (in seconds):

I n [ 8 ] := P lo t [ Aca lG lob2 [ L , 1 , L23APT ] , { L ,−3 ,11}]// Timing
Out [8]= {19 .843 , G raph i c s
( s e e i n the l e f t pane l o f F ig . be low )}

In [ 9 ] := P lo t [ Uca lG lob2 [ L , 1 , L23APT ] , { L ,−3 ,11}]// Timing
Out [9]= {14 .656 , G raph i c s
( s e e i n the r i g h t pane l o f F ig . be low )}
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“FAPT” package Interpolation

Interpolation

To obtain the fast results one can use the package “FAPT_Interp” which consists of
procedures AcalGlob`i[L, ν,Λ3] and UcalGlob`i[L, ν,Λ3], which are based on interpolation
using the basis of the precalculated data.

Relative error of the interpolation procedure for Aglob
ν=1.1 and Aglob

ν=1.1.
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The relative error for A(1);glob
ν is less than for A(1);glob

ν . In any case, using the same
pre-computed data provides an error less than 0.01 %.
ICAS (Gomel State Tech. University) V. Khandramai May 18, 2013 28 / 31



Summary

Summary

APT provides natural way for coupling constant and related quantities with

Universal (loop independent) IR limit;

Weak dependence on the number loops.

Fractional APT provides effective tool to apply Analytic approach for RG improved
perturbative amplitudes.

This approaches are used in several applications:

Higgs boson decay [Bakulev, Mikhailov, Stefanis (2007)];

calculation of binding energies and masses of quarkonia [Ayala, Cvetič (2013)];

analysis of the structure function F2(x) behavior at small values of x [Kotikov,
Krivokhizhin, Shaikhatdenov (2012)];

resummation approach [Bakulev, Potapova (2011)].

We collected in “FAPT” package all the procedures in APT and FAPT which are
needed to compute the analytic images of the ᾱs powers up to N3LO based on the
system Mathematica.
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In memory of Alexander Bakulev

In memory of Alexander Bakulev

25.06.1956 – 28.09.2012

Professor
Alexander Bakulev
Leading Researcher, Bogolyubov Lab,
JINR, Dubna

About 70 papers (average citations
per paper = 20), including popular
papers on Fractional APT:

A. Bakulev, S. Mikhailov, N. Stefanis,
Phys.Rev. D72 (2005) [CI=60]

A. Bakulev, S. Mikhailov, N. Stefanis,
Phys.Rev. D75 (2007) [CI=47]
A. Bakulev,
Phys.Part.Nucl. 40 (2009) [CI=30]
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In memory of Alexander Bakulev

Thanks for your attention!

And I thank especially organizers of ACAT2013
for happy possibility to take part in conference!
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