Automatic one-loop calculations with OpenLoops

Philipp Maierhöfer

Institute for Theoretical Physics
University of Zürich

ACAT: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Beijing, 18 May 2013

In Collaboration with
F. Cascioli, S. Pozzorini (OpenLoops)
S. Höche, F. Krauss, F. Siegert (Sherpa)
Outline

1 Introduction

2 The OpenLoops Algorithm
 - Colour and Tensor Reduction
 - Open Loops Recursion
 - Performance and Numerical Stability

3 Sherpa+OpenLoops
 - Interfacing with Monte Carlo Event Generators
 - Process libraries for ATLAS and CMS

4 Irreducible background to $H \rightarrow WW^* + 0,1$ jet
The NLO Frontier: Automation

The list of completed ≥ 6 particle processes keeps growing . . .

$pp \rightarrow WWb\bar{b}$
[Denner, Dittmaier, Kallweit, Pozzorini ‘11]
[Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ‘11]

$pp \rightarrow t\bar{t}b\bar{b}$
[Bredenstein, Denner, Dittmaier, Pozzorini ‘08, ‘09, ‘10]
[Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘09]

$pp \rightarrow t\bar{t}jj$
[Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘10]

$pp \rightarrow t\bar{t}t\bar{t}$
[Bevilacqua, Worek ‘12]

$pp \rightarrow WW + 2j$
[Melia, Melnikov, Rontsch, Zanderighi ‘10]
[Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano ‘12]

$pp \rightarrow W + 3j$
[Ellis, Melnikov, Zanderighi ‘09]

$pp \rightarrow \gamma^*/Z/W + 3j$
[Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maître ‘09, ‘10]

$pp \rightarrow Z/W + 4j$
[Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maître ‘10, ‘11]

$pp \rightarrow W^\pm + 5j$
[Bern, Dixon, Febres Cordero, Höche, Ita, Kosower, Maître, Ozeren ‘13]

$pp \rightarrow 4j$
[Bern, Diana, Dixon, Febres Cordero, Höche, Ita, Kosower, Maître, Ozeren ‘11]

$pp \rightarrow b\bar{b}b\bar{b}$
[Greiner, Guffanti, Reiter, Reuter ‘11]

$pp \rightarrow W\gamma\gamma j$
[Campanario, Englert, Rauch, Zeppenfeld ‘11]

$pp \rightarrow WZjj$
[Campanario, Kerner, Ninh, Zeppenfeld ‘13]

$e^+e^- \rightarrow 7j$
[Becker, Goetz, Reuschle, Schwan, Weinzierl ‘11]

. . . but NLO automation is still a challenge.

- Focus on speed and usability.
- Arbitrary processes, decays, electroweak corrections, . . .
- Progress in Monte Carlo generators: beyond parton level NLO.
From Loop Amplitudes to Scalar Integrals

\[\int d^d q \frac{\mathcal{N}(q)}{D_0 D_1 \ldots D_{N-1}}, \quad D_i = (q + \sum_{\ell=0}^i p_\ell)^2 - m_i^2 \]

Tensor integral reduction to a linear combination of scalar basis integrals

\[\int d^d q \left[\sum_{i_1} \frac{a_{i_1}}{D_{i_1}} + \sum_{i_1, i_2} \frac{b_{i_1 i_2}}{D_{i_1} D_{i_2}} + \sum_{i_1, i_2, i_3} \frac{c_{i_1 i_2 i_3}}{D_{i_1} D_{i_2} D_{i_3}} + \sum_{i_1, i_2, i_3, i_4} \frac{d_{i_1 i_2 i_3 i_4}}{D_{i_1} D_{i_2} D_{i_3} D_{i_4}} \right] \]

Tensor integral reduction combined with off-shell current recursion can compete with on-shell methods in gluon scattering with up to 10 gluons. [van Hameren ‘09]
Colour and Tensor Reduction

For each Feynman diagram separate **colour factors** and **tensor coefficients** from **tensor integrals**.

\[A = C \cdot \sum_{r=0}^{R} N_{r}^{\mu 1 \ldots \mu r} \cdot \int d^{d}q \frac{q_{\mu 1} \ldots q_{\mu r}}{D_{0} \cdot D_{1} \ldots D_{N-1}} \]

- Algebraic colour reduction and summation only once per process.
- Reduce tensor integrals to scalar basis integrals [Melrose; Passarino, Veltman; Denner, Dittmaier; Binoth et al.; Fleischer, Riemann; & many others].

 We use **Collier** [Denner, Dittmaier, Hofer]: cures numerical instabilities, e.g. by applying expansions in small Gram determinants.
- Alternatively use OPP reduction [Ossola, Papadopoulos, Pittau]: requires multiple evaluations of \(N_{r}^{\mu 1 \ldots \mu r} q_{\mu 1} \ldots q_{\mu r} \) for complex \(q \).

“Traditional” approach: construct \(N_{r}^{\mu 1 \ldots \mu r} \) analytically in \(d = 4 - 2\epsilon \). Huge expressions & expensive algebraic simplifications limit applicability.

OpenLoops: Recursive numerical construction of \(N_{r}^{\mu 1 \ldots \mu r} \) in \(d = 4 \).
Wave functions w^α of “sub-trees” are 4-tuples (for the spinor/Lorentz index) which are built by recursively connecting lower sub-trees with vertices $X_{\gamma\delta}^\beta$ and propagators, starting from external legs.

$$w^\beta(i) = \frac{X_{\gamma\delta}^\beta}{p_i^2 - m_i^2} w^\gamma(j) w^\delta(k)$$

A one-loop diagram is an ordered set of sub-trees $I_n = \{i_1, \ldots, i_n\}$

Connect sub-trees along the loop to build the numerator $N = N^\alpha_\alpha$:

$$N^\beta_\alpha (I_n; q) = X_{\gamma\delta}^\beta N^\gamma_\alpha (I_{n-1}; q) w^\delta(i_n)$$
Open Loops Recursion

Separation of the loop momentum q

$$\mathcal{N}_{\alpha}^{\beta}(I_n; q) = \sum_{r=0}^{n} \mathcal{N}_{\mu_1...\mu_r;\alpha}(I_n) q^{\mu_1} \cdots q^{\mu_r}, \quad X_{\gamma\delta}^{\beta} = Y_{\gamma\delta}^{\beta} + q^{\nu} Z_{\nu;\gamma\delta}^{\beta}$$

leads to the recursion formula for “Open loops” polynomials $\mathcal{N}_{\mu_1...\mu_r;\alpha}^{\beta}$:

$$\mathcal{N}_{\mu_1...\mu_r;\alpha}(I_n) = \left[Y_{\gamma\delta}^{\beta} \mathcal{N}_{\mu_1...\mu_r;\alpha}(I_{n-1}) + Z_{\mu_1;\gamma\delta}^{\beta} \mathcal{N}_{\mu_2...\mu_r;\alpha}(I_{n-1}) \right] w^{\delta}(i_n)$$

- Retains functional dependence on the loop momentum.
- $\mathcal{N}_{\mu_1...\mu_r;\alpha}^{\alpha}$ are the coefficients of the tensor integrals.
- Also, once the polynomials are known, multiple evaluations of

$$\mathcal{N}(q) = \sum_{r=0}^{n} \mathcal{N}_{\mu_1...\mu_r;\alpha}^{\alpha} q^{\mu_1} \cdots q^{\mu_r}$$

are very fast. \Rightarrow boosts OPP

Open loops can be interfaced with both tensor integrals and OPP in a straightforward way.
Recycling and Helicity Summation

Open loops recycling
Lower-point open-loops can be shared between diagrams if the cut it put appropriately.

Helicity summation
Perform interference with the Born amplitude M, colour and helicity sums and the sum over the set of diagrams Δ with identical denominator structure on the level of open-loop coefficients.

$$
\delta W^\Delta = \sum_{\text{hel, col}} 2 \text{Re} \left[M^* \left(\sum_{d' \in \Delta} \delta M^{(d')} \right) \right]
$$

$$
\delta W^\Delta_{\mu_1...\mu_R} = \sum_{\text{hel, col}} 2 \times \left[M^* \left(\sum_{d' \in \Delta} C^{(d')} N^{(d')}_{\mu_1...\mu_R} \right) \right]
$$

Helicity sums with OPP as efficient as with tensor integrals
Implementation

User input: process definition file

- FeynArts [Hahn] generates Feynman diagrams.
- Mathematica organises recursion and recycling, reduces colour factors and generates Fortran 90 code.
- Numerical routines for QCD corrections to Standard Model processes implemented in Fortran 90.
- Symmetrising $N_{\mu_1...\mu_r;\alpha}^\beta$ keeps the number of components manageable.
- Rational terms R_2 are calculated using the tree generator.
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09, ‘10; Shao, Zhang, Chao ‘11]
- No user interaction required: process definition \rightarrow compiled library.

Consistency checks

- UV/IR cancellations and Ward identities
- Tensor integrals / OPP reduction with different libraries
- “pseudo-tree”: fix loop momentum and compare to tree generator
Speed and Flexibility

Time to generate code: seconds to minutes
Compiled library size: 100 kB to a few MB
Runtime per phase space point: < 1 s for a $2 \rightarrow 4$ process (i7-750 single core, ifort 10.1)

Fractions of the runtime for scalar integrals, tensor reduction, coefficients

Full helicity sums cost only a factor ~ 2 for a $2 \rightarrow 4$ process.
Numerical Stability

The numerical precision can be estimated by a scaling test:

\[m_i \rightarrow \xi m_i, \quad p_i^\mu \rightarrow \xi p_i^\mu \]

leads to

\[\delta \mathcal{W} \rightarrow \delta \mathcal{W}' = \xi^K \delta \mathcal{W} \]

\[\Rightarrow \text{precision } \Delta = \left| \frac{\xi^{-K} \delta \mathcal{W}'}{\delta \mathcal{W}} - 1 \right|, \quad \text{rsp. } d = -\log_{10} \Delta \text{ decimal digits.} \]

12 processes, \(10^6 \) phase space points each;

\[\sqrt{s} = 1 \text{ TeV}, \quad p_T > 50 \text{ GeV, } \Delta R_{ij} > 0.5; \]

using tensor integrals, in double precision;

11-15 digits on average;

1 permille with <5 digits in the worst 2 \(\rightarrow \) 4 case.
Automated one-loop calculations with OpenLoops

Philipp Maierhöfer
University of Zürich ACA T 2013

Automation of NLO Calculations

Combine OpenLoops with multi-purpose Monte Carlo programs

- aMC@NLO, POWHEG, Sherpa:
 IR subtraction, real emission, phase space integration,
 NLO matching with shower, jet merging, hadronisation.
- OpenLoops provides an easy to use API to directly access
 initialisation and matrix element routines.
- Seamless integration of tools desired.

Done: Sherpa+OpenLoops interface

- Use OpenLoops to generate and compile process libraries.
- Steered by standard Sherpa run cards.
- No hard-wiring or interface code generation required.
- Perform on-the-fly consistency and stability checks.
Process libraries for ATLAS and CMS

Libraries for a wide range of processes are available to ATLAS and CMS.

<table>
<thead>
<tr>
<th>W/Z</th>
<th>jets</th>
<th>HQ pairs</th>
<th>single-top</th>
<th>Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V + 3j$</td>
<td>$\gamma + 3j$</td>
<td>$tt + 1j$</td>
<td>$tb + 1j$</td>
<td>$(H + 2j)$</td>
</tr>
<tr>
<td>$VV + 2j$</td>
<td>$\gamma + 1(2)j$</td>
<td>$t\bar{t}V + 0(1)j$</td>
<td>$t + 1(2)j$</td>
<td>$VH + 1j$</td>
</tr>
<tr>
<td>$gg \rightarrow VV + 1j$</td>
<td>$V\gamma + 2j$</td>
<td>$b\bar{b}V + 0(1)j$</td>
<td>$tW + 0(1)j$</td>
<td>$t\bar{t}H$</td>
</tr>
<tr>
<td>$VVV + 0(1)j$</td>
<td></td>
<td></td>
<td></td>
<td>$qq \rightarrow Hqq + 0(1)j$</td>
</tr>
</tbody>
</table>

(including lower jet multiplicities)

- Validated process-by-process.
- All contributing 1-loop diagrams, full colour.
- Off-shell leptonic W/Z decays (complex masses).
- First step towards a public OpenLoops release.
Signal: two opposite sign leptons $+ E_T^{\text{miss}}$, binned in jet multiplicities. Data driven analysis: normalise background (from MC simulation) to data in control region (right) and extrapolate to signal region (left).
H → WW* → e⁻νₑμ⁺νμ in exclusive 0-/1-jet bins

Previously available predictions for \(pp \rightarrow e⁻νₑμ⁺νμ + 0/1\)jets

<table>
<thead>
<tr>
<th></th>
<th>NLO</th>
<th>gg induced</th>
<th>NLO+PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 jets</td>
<td>[Campbell, Ellis, Williams '11]</td>
<td>[Binoth et al. '05]</td>
<td>[Melia et al. '11]</td>
</tr>
<tr>
<td></td>
<td>[Campbell, Ellis, Williams '11]</td>
<td></td>
<td>[Frederix et al. '11]</td>
</tr>
<tr>
<td>1 jet</td>
<td>[Dittmaier, Kallweit, Uwer '07]</td>
<td>[Melia et al. '12]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Campbell, Ellis, Zanderighi '07]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Agrawal, Shivaji '12]</td>
<td></td>
</tr>
</tbody>
</table>

Sherpa+OpenLoops (preliminary)

- \(ℓℓνν + 0/1\)jets MEPS@NLO [Höche, Krauss, Schönherr, Siegert '12]: parton shower and jet merging, NLO+LL accuracy in 0- and 1-jet bins.
- More realistic error estimates, including \(p_T^{veto} \) logs.
- Compare to NLO (no resummation), and MC@NLO (LO in 1-jet bin).
- Include all spin correlation, off-shell, and interference effects.
- Studies for ATLAS and CMS experimental analysis.
- Gluon induced channels in progress.
Transverse WW mass distributions ($CMS @ 8$ TeV)

- 20% level agreement between NLO/MC@NLO/MEPS@NLO in 0-jet bin.
- 20% discrepancies between MC@NLO and MEPS@NLO in 1-jet bin.
- Shape distortions are small.
Cross sections in 0-jet and 1-jet bins (CMS @ 8 TeV)

... in the signal and control regions for NLO/MC@NLO/MEPS@NLO.

<table>
<thead>
<tr>
<th>0-jets bin</th>
<th>NLO $\pm \Delta_{QCD}$</th>
<th>MC@NLO</th>
<th>MEPS@NLO $\pm \Delta_{QCD}$ $\pm \Delta_{res}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_s [fb]</td>
<td>159.34(18) $^{+1.8%}_{-1.7%}$</td>
<td>150.6(2)</td>
<td>160.3(3) $^{+2.6%}{-3.8%}$ $^{+1.4%}{-0.5%}$</td>
</tr>
<tr>
<td>σ_C [fb]</td>
<td>60.08(15) $^{+1.5%}_{-1.4%}$</td>
<td>56.60(11)</td>
<td>60.31(22) $^{+3.6%}{-3.5%}$ $^{+0.7%}{-0.2%}$</td>
</tr>
<tr>
<td>σ_s/σ_C</td>
<td>2.65</td>
<td>2.66</td>
<td>2.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-jet bin</th>
<th>NLO $\pm \Delta_{QCD}$</th>
<th>MC@NLO</th>
<th>MEPS@NLO $\pm \Delta_{QCD}$ $\pm \Delta_{res}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_s [fb]</td>
<td>45.01(7) $^{+1.3%}_{-2.6%}$</td>
<td>34.75(9)</td>
<td>44.88(23) $^{+3.0%}{-2.7%}$ $^{+0.1%}{-0.3%}$</td>
</tr>
<tr>
<td>σ_C [fb]</td>
<td>22.09(5) $^{+1.2%}_{-3.2%}$</td>
<td>17.41(7)</td>
<td>22.30(18) $^{+3.0%}{-2.7%}$ $^{+0.5%}{-0.4%}$</td>
</tr>
<tr>
<td>σ_s/σ_C</td>
<td>2.04</td>
<td>2.00</td>
<td>2.01</td>
</tr>
</tbody>
</table>

- Error estimation from QCD scales and resummation scale.
- Good agreement between NLO and MEPS@NLO, small scale uncertainties \rightarrow Sudakuv logarithms turn out to be small.
- MC@NLO \sim 20% smaller in 1-jet bin (only LO accuracy).
Summary

OpenLoops

- Diagrammatic, tree-like recursion for loop momentum polynomials to calculate one-loop amplitudes.
- Automatic, fast code generation, compact libraries.
- Fast and numerically stable evaluation of matrix elements.

Sherpa+OpenLoops

- Fully automated interface, NLO matching with parton shower and jet merging.
- Process libraries available to ATLAS and CMS.

MEPS@NLO predictions for $H \rightarrow WW^*$ background in 0/1-jet bins

- NLO accuracy and LL Sudakov resummation in individual jet bins.
- Small and more reliably estimated theoretical uncertainties.