# Gravitational waves from a dilaton-induced, first-order QCD phase transition

A. Chatrchyan, M. C. D. Marsh, C. Nikolis (arXiv:2507.01191)

Dec 11, 2025

# Outline

- Motivation
- Model: QCD dilaton
- Scenario
- Phase Transition
- Gravitational wave production
- 6 Conclusions

## Motivation

- Pulsar Timing Array (PTA) collaborations have reported evidence for a stochastic nanohertz GW background.
- Cosmological first-order phase transitions are a compelling source of stochastic GWs.
- This paper shows how a QCD-sector dilaton can make the QCD transition first-order and produce a PTA-scale GW signal.

# QCD dilaton: basic idea

- Quantum gravity is expected to have no free parameters or true constants.
- Introduce a scalar 'dilaton' field  $\phi$  that the dynamical QCD coupling constant 'secretly' depend on.
- $\mu$  the energy scale,  $\beta_0 = 11 2N_f/3$ ,  $g_3$  coupling constant.  $f(\phi)$  sets the coupling.

$$\Lambda_{\rm QCD} = \mu \exp \left[ - \frac{8 \pi^2}{\beta_0 g_3^2(\mu)} \right]$$

$$\mathcal{L} = -\frac{1}{2} f(\phi) \operatorname{tr} \left( G_{\mu\nu} G^{\mu\nu} \right) + \sum_{i} \bar{q}_{i} \left( i \not \! D - m_{i} \right) q_{i}$$
$$+ \frac{1}{2} (\partial \phi)^{2} - V_{0}(\phi) ,$$

#### Scenario

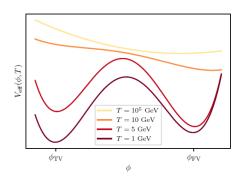
- The zero-temperature dilaton potential  $V_0(\phi)$  has two minima with  $V_0(\phi_{FV}) > V_0(\phi_{TV})$ , and, importantly,  $f(\phi_{FV}) > f(\phi_{TV})$ .
- This **assumption** means that QCD is more weakly coupled in the false vacuum than in the true vacuum.
- Possible realisations: modulus field from string theory, holomorphic gauge kinetic function of supergravity...
- For  $\Delta f \sim O(1)$ , QCD with  $\phi_{FV}$  remains weakly coupled well below the critical temperature.
- Experiments:  $\alpha_s(m_Z) = 0.1180 \pm 0.0009$

$$\mathfrak{f}_{\mathrm{TV}} \equiv \mathfrak{f}\left(\phi_{\mathrm{TV}}\right) = \frac{\beta_0}{8\pi^2} \ln \left(\frac{\Lambda_{\mathrm{UV}}}{m_Z}\right) + \frac{1}{4\pi\alpha_s(m_Z)}$$

$$\Lambda_{\rm QCD}^{\rm FV} = \Lambda_{\rm QCD}^{\rm TV} \exp \left( -\frac{8\pi^2 \Delta \mathfrak{f}}{\beta_0} \right)$$

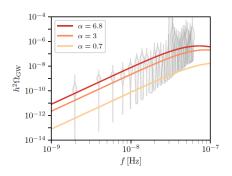
## **Potential**

•  $V_0$  zero-temperature potential,  $V_T$  thermal one loop correction,  $J_B$  thermal bosonic function,  $m_\phi \sim 10$  TeV,  $V_P$  thermal QCD correction,  $\alpha_s = 1/(4\pi f)$ 


$$V_{\rm eff}(\phi) = V_0(\phi) + V_{\rm T}(\phi) + V_{\mathcal{P}}(\phi)$$

$$V_{\rm T}(\phi) = \frac{T^4}{2\pi^2} J_{\rm B} \left( \frac{m_\phi^2(\phi)}{T^2} \right)$$

$$V_{\mathcal{P}}(\phi) = -\frac{8\pi^2 T^4}{45} \left( \frac{17}{3} - \frac{235}{16} \alpha_s(\phi) + \mathcal{O}(\alpha_s^{3/2}) \right)$$


### Phase Transition

- Outside the bubble,  $\phi$  is at false vacuum, QCD coupling is weak and quark matter remains.
- **Inside** the bubble,  $\phi$  is at true vacuum, QCD coupling is strong and the crossover rapidly realizes the hadronisation.
- This scenario effectively turns the QCD phase transition first order.
- Supercooled:  $\beta/H$  is small.



# GW sources and spectrum

- Peak frequency falls in the PTA band (nano-Hz) for QCD-scale transitions with the model's parameters.
- $\beta/H = 3 \sim 8$



#### Conclusions

- A QCD dilaton can turn the QCD phase transition first-order and produce a stochastic GW background.
- Dilation and false vacuum scenario is applicable ?