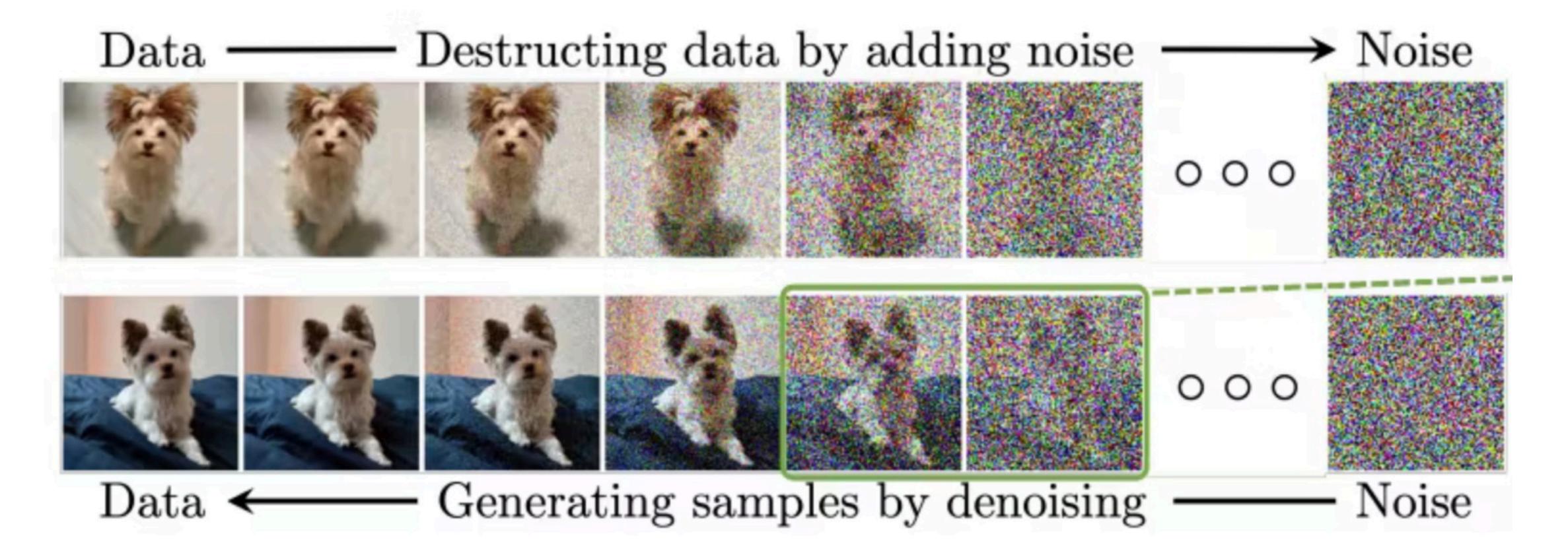
Generative sampling with physics-informed kernels

arXiv: 2510.26678

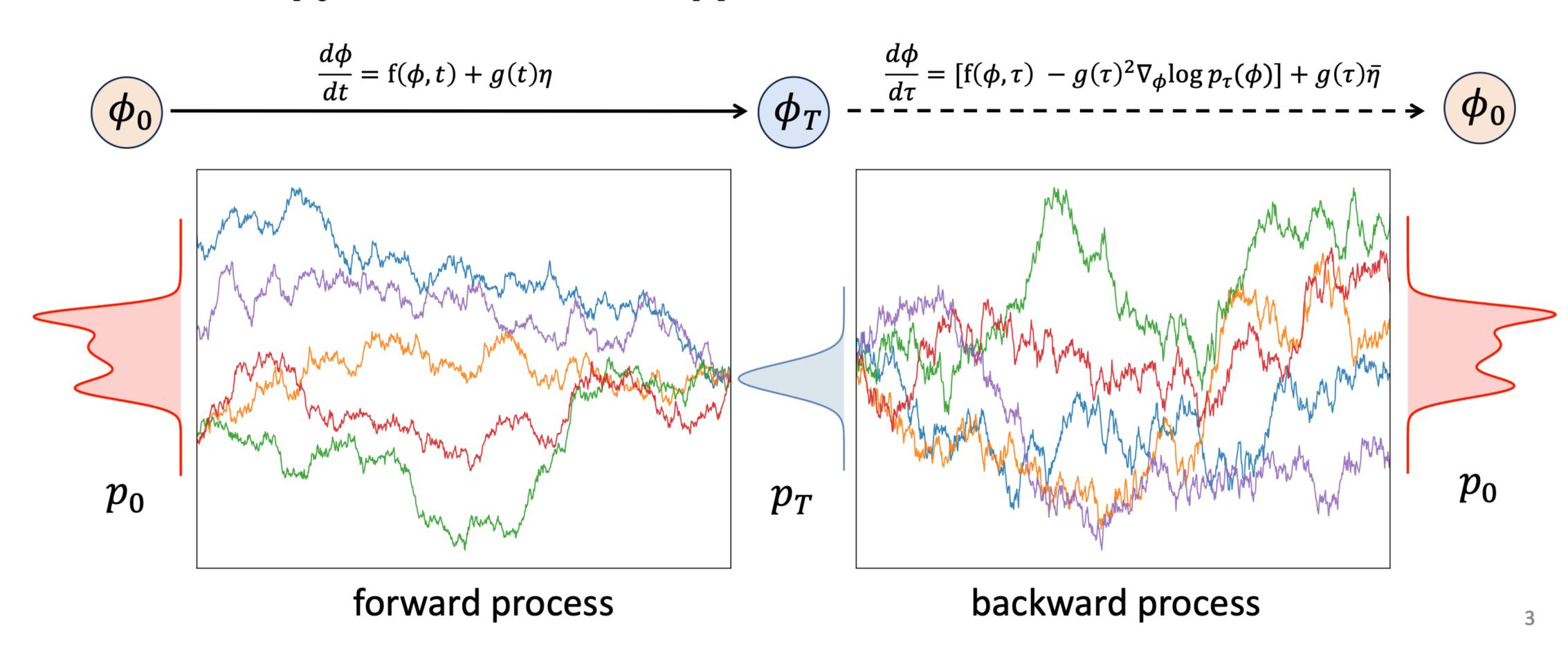
Friederike Ihssen,¹ Renzo Kapust,^{1,*} and Jan M. Pawlowski^{1,2}

- Traditional sampling method is usually based on MCMC
- Several practical problems might occur: critical slowing-down, parallelization



create new images (or configurations) by learning from existing data sets (or ensembles)

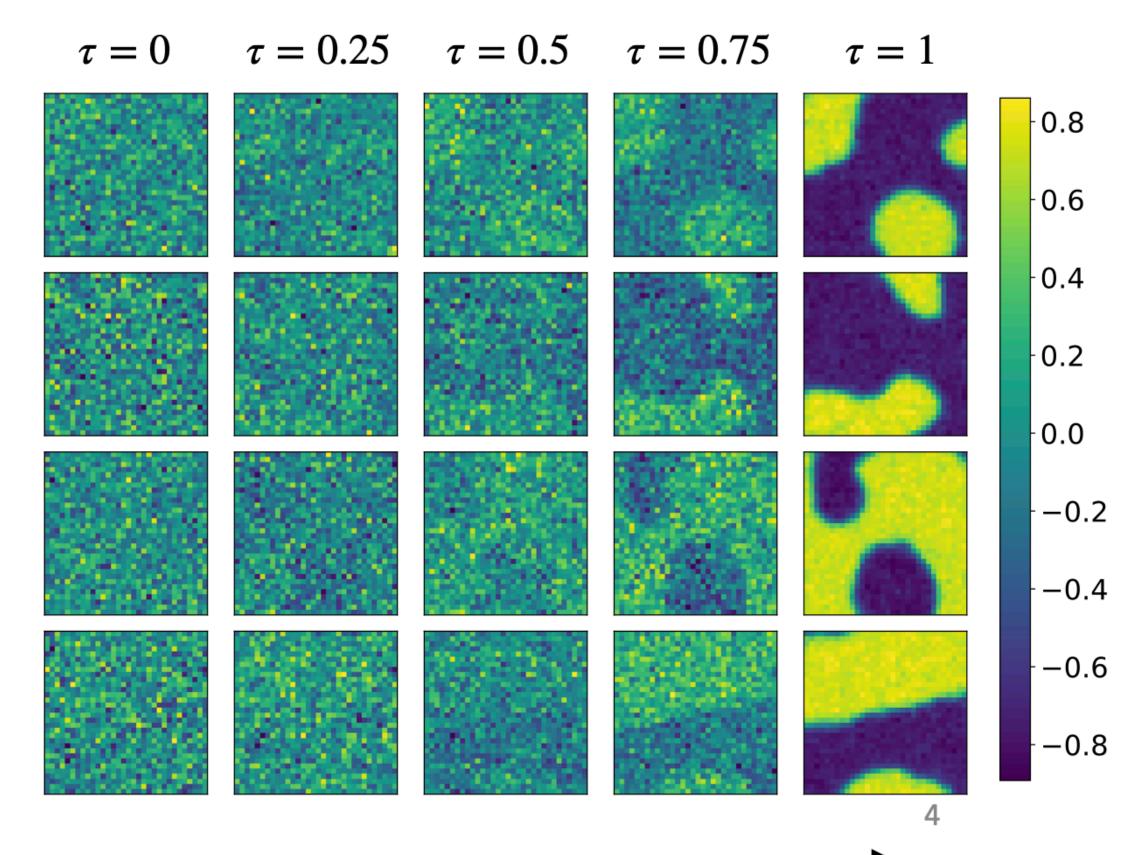
o in pictures: p_0 is target (non-trivial), p_T is the prior (easy)

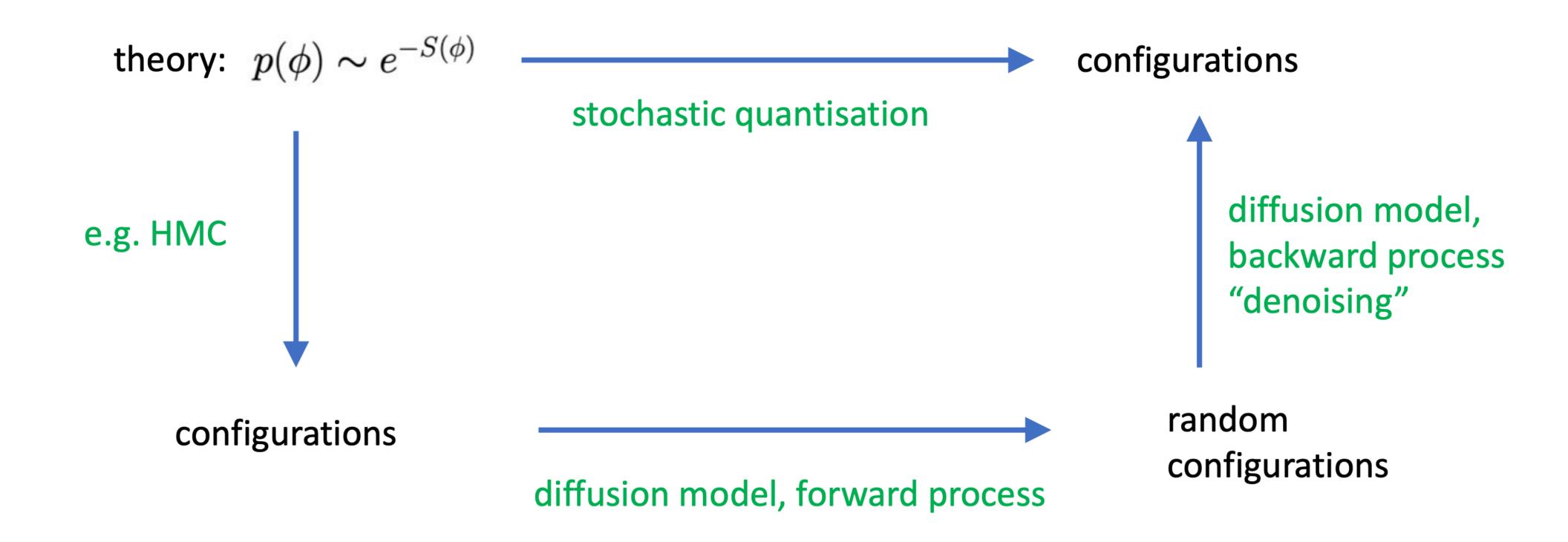


- o apply approach to lattice field theory, ambition is to improve upon standard (MC) methods
- o 32² lattice, parameters in symmetric and broken phase
- training data set generated
 using Hybrid Monte Carlo (HMC)

generating configurations:

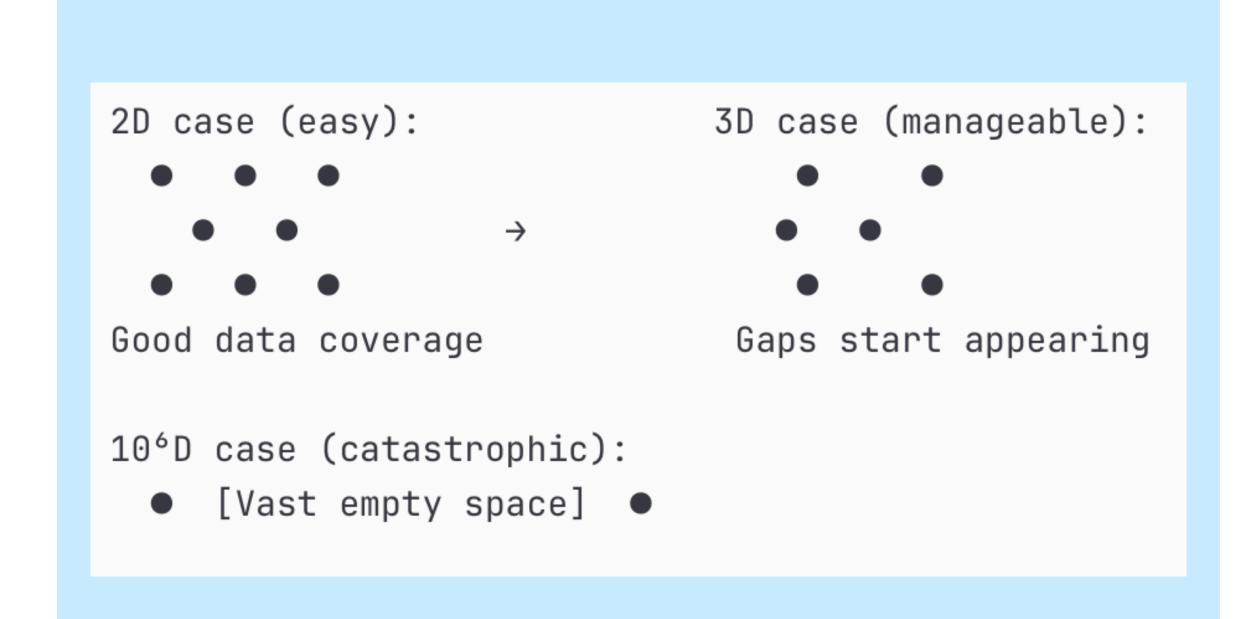
- broken phase
- "denoising" (backward process)
- large-scale clusters emerge, as expected





Motivation

However, this generative model approach faces two out-of-domain (OOD) problems



Interpolation in high-dimensional space

- With given number of data points, only finite number of cumulants can be accurately learned
- Extrapolation to higher order cumulant would be costing

Extrapolation with limited data

Motivation

 The above problems are absent for distributions which have a finite number of independent moments. E.g.

$$Y = e^X, X \sim \mathcal{N}(0, \sigma^2)$$
 $Y \to \log Y$

Infinite number of cumulants

Only 1 cumulant

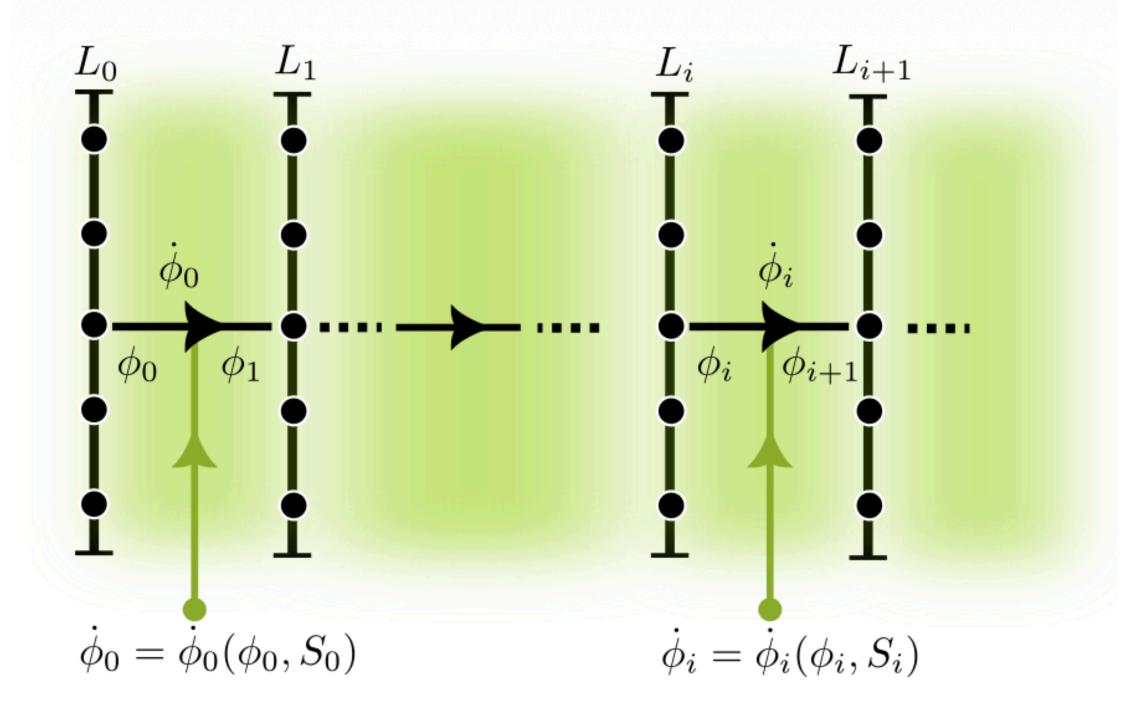
 If a generative network can constructively unravel such a typically highly nonlinear transformation within a rather finite data or training set, the generative task is practically solved. — Physics-informed renormalisation group flows (PIRGs)

PIRGs in a nutshell

The aim of the method is to sample with distribution

$$p(\varphi) = \frac{1}{\mathcal{N}} e^{-\hat{S}(\varphi)} \to e^{-S(\varphi)}$$

- PIRGs introduces RG time t
- Pair $\{S_t(\phi), \phi_t\}$ runs with t
- t = 0, distribution from simple model
- t = 1, target distribution



PIRGs in a nutshell

- We first replace φ with φ by a non-linear transformation. As t runs from 0 to 1, it undergoes several infinitesimal transformations.
- The transformation comes with a change of distribution $p_t(\phi)$ or its Laplace transform

$$Z(J) = \int \mathcal{D}\phi p_t(\phi) e^{\sum_{\hat{n}} \phi_{\hat{n}} J_{\hat{n}}}$$

 The most general scale and reparametrisation RG transformation is accommodated by the flow of the measure

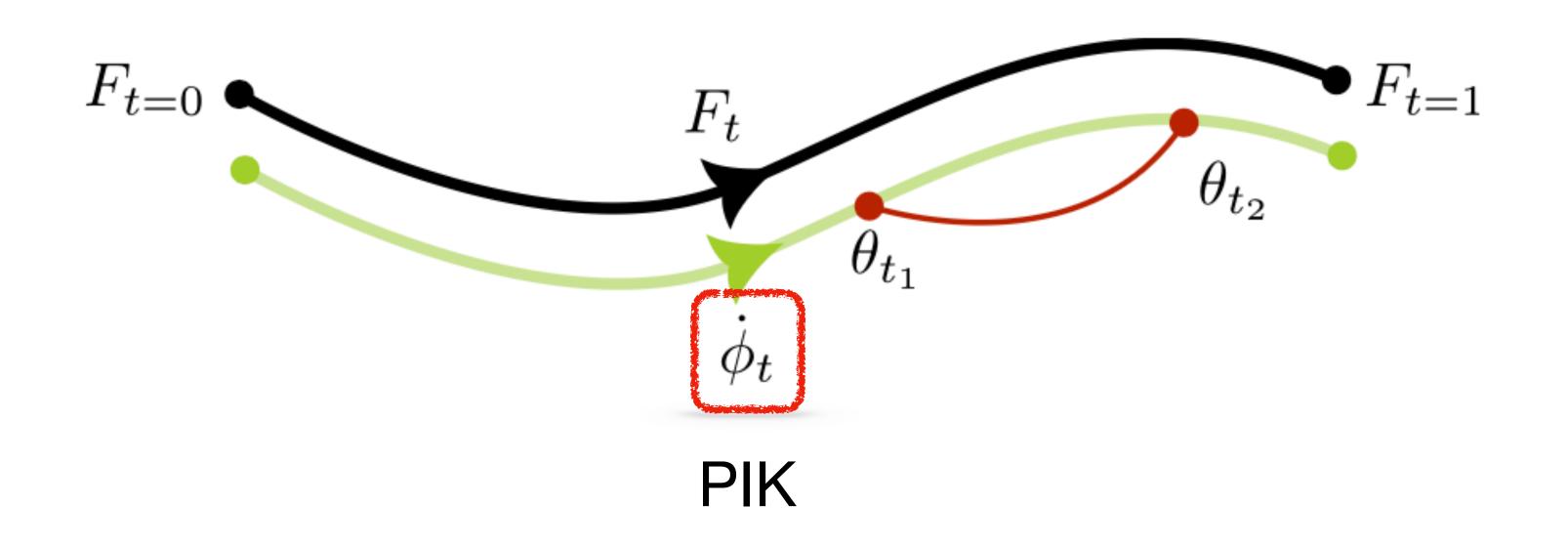
$$\frac{d p_t(\phi)}{dt} = \frac{\partial}{\partial \phi} \left[\Psi_t(\phi) p_t(\phi) \right]$$

PIRGs in a nutshell

• By choosing $\Psi \propto \dot{\phi}$, the total change of field and action or negative log likelihood is covered by

$$\frac{dS_t(\phi)}{dt} + \dot{\phi}_t(\phi) \frac{\partial}{\partial \phi} S_t(\phi) = \frac{\partial}{\partial \phi} \dot{\phi}_t(\phi)$$

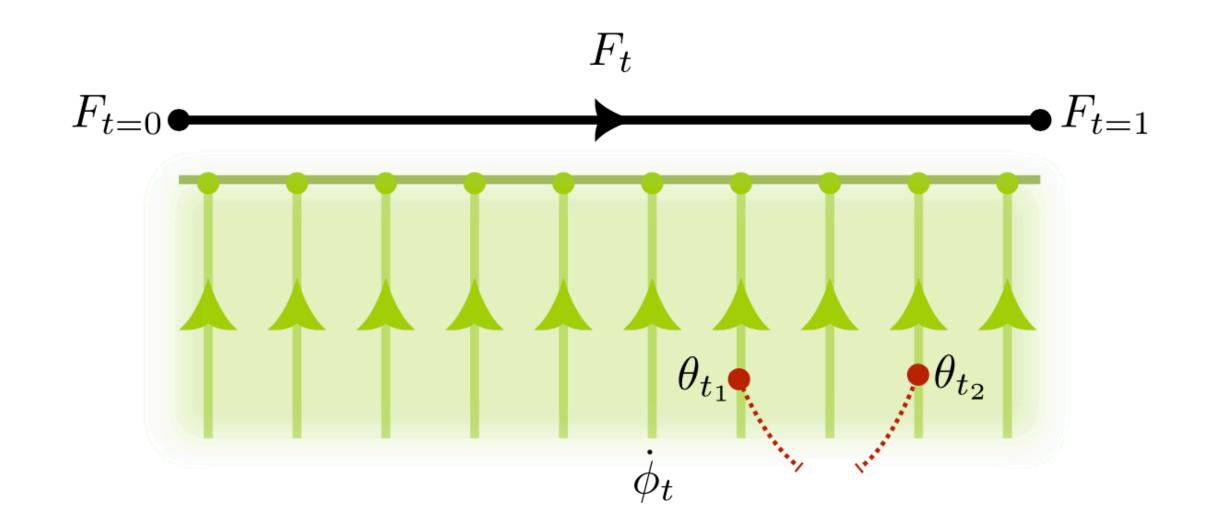
- $S_t(\phi)$ at t=0 and t=1 are fixed, but the path is accessible
- Linear PDE for $\dot{\phi}_t$ (using NN to solve)



PIRG in a nutshell

- With $\dot{\phi}_t$ at each t, ϕ_t can be easily determined
- Key properties of PIKs
 - Independent kernels

- OOD resolution
- Optimization



Parametrisation of $S_t(\phi)$

$$S_t(\phi) = \hat{S}_t(\phi) + \log \mathcal{N}_t.$$

$$\hat{S}_t(\phi) = \sum_i c_{i,t} \, \mathcal{O}_i(\phi) \qquad \qquad \frac{d \log \mathcal{N}_t}{dt} = -\int \mathcal{D}\phi \, p_t(\phi) \frac{d \hat{S}_t(\phi)}{dt}$$
 Hard to calculate

• $\mathcal{O}_i(\phi)$ is a set of basis functions, and have many choices

Parametrisation of $S_t(\phi)$

• Since $d\log \mathcal{N}_t/dt$ is field independent, we can introduce a simple reference configuration χ and calculate the difference

$$0 = \frac{d\hat{S}_{t}(\phi)}{dt} - \frac{d\hat{S}_{t}(\chi)}{dt}$$

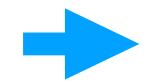
$$- \left[\frac{\partial}{\partial \phi} - \frac{\partial \hat{S}_{t}(\phi)}{\partial \phi} \right] \dot{\phi}_{t}(\phi)$$

$$+ \left[\frac{\partial}{\partial \phi} - \frac{\partial \hat{S}_{t}(\phi)}{\partial \phi} \right] \dot{\phi}_{t}(\phi) \Big|_{\phi = \chi}$$

Parametrisation of $\dot{\phi}_t(\phi)$

• The above parametrisation of S_t fixes all S_t -dependent terms in the Wegner equation, and leaves us with the task of solving it for the physics-informed kernels $\dot{\phi}_t(\phi)$

$$\dot{\phi}_t(\phi) = \sum_j k_{j,t} K_{j,t}(\phi)$$



$$A_t k_t = b_t$$

PIKs at work — zero dimensional ϕ^4

$$\hat{S}(\varphi) = \frac{1}{2}m^2\varphi^2 + \frac{\lambda}{4!}\varphi^4, \qquad \varphi \in \mathbb{R}$$

• The PIRG pair $\{S_t(\phi), \phi_t\}$ is defined by

$$\hat{S}_t(\phi) = \frac{1}{2} m^2(t) \, \phi^2 + \frac{\lambda(t)}{4} \, \phi^4 \,, \qquad \phi \in \mathbb{R} \,,$$

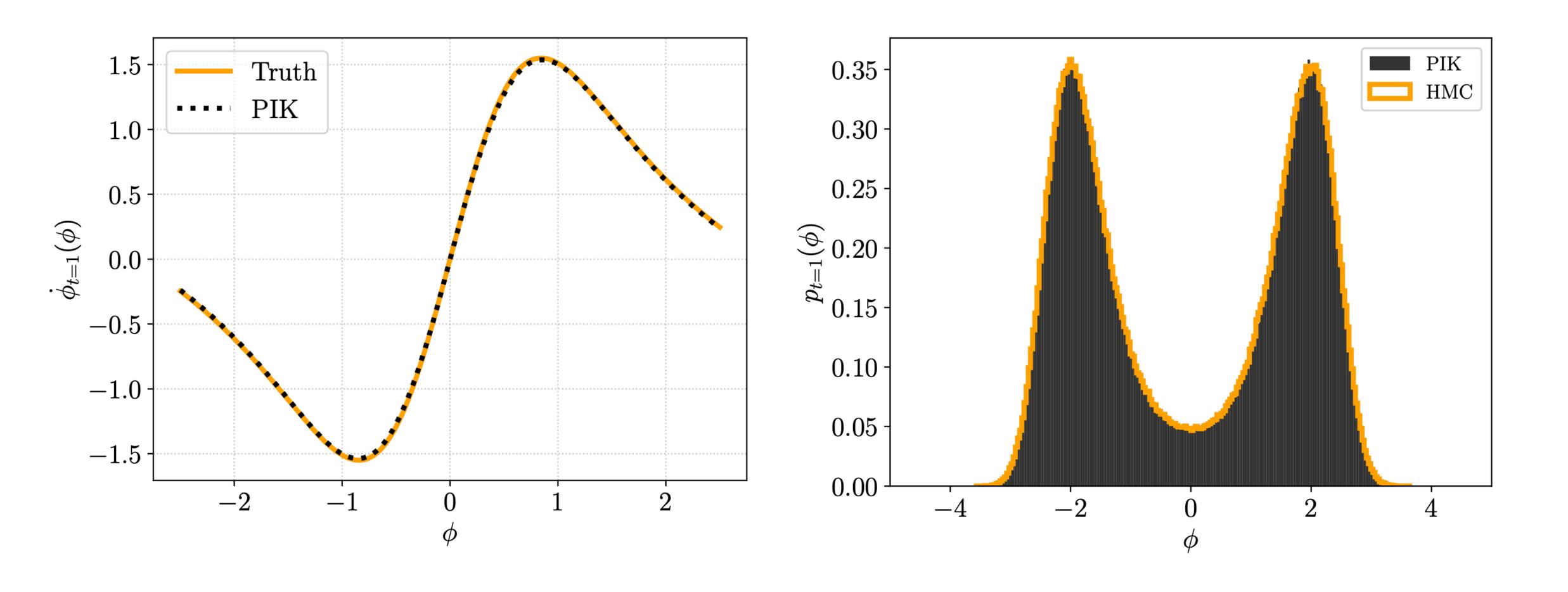
with

$$m^{2}(t) = m_{0}^{2} + t \left(m_{1}^{2} - m_{0}^{2}\right)$$

 $\lambda(t) = \lambda_{0} + t \left(\lambda_{1} - \lambda_{0}\right).$

$$m_0^2 = 1$$
, $\lambda_0 = 0$, $m_1^2 = -2$, $\lambda_1 = \frac{1}{2}$

PIKs at work — zero dimensional ϕ^4



Optimisation with parameter-conditional PIKs

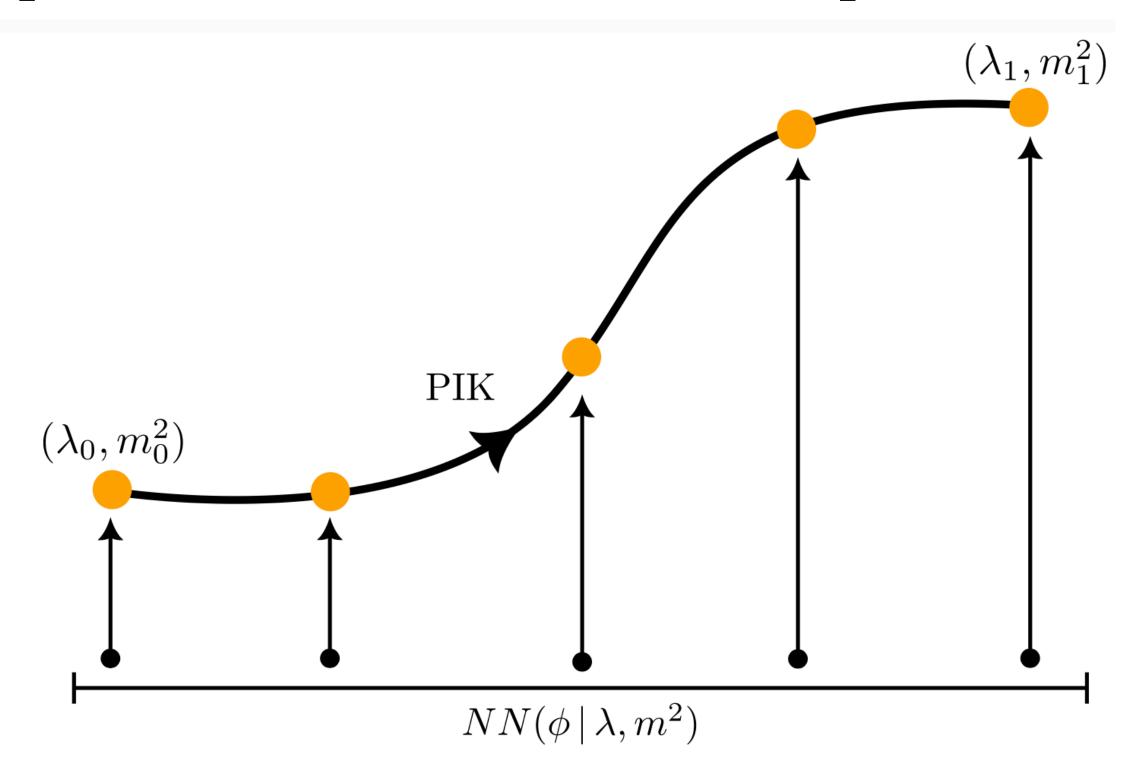


Figure 7. Difference in the kind of parameter conditionality for PIKs differs and traditional generative models $NN(\phi \mid \lambda, m^2)$. While PIKs move along the path determined by the parameters, traditional models need to sample each set of configurations individually.

