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Theoretical description of NMEs: Uncertainties and Challenges

O Impact of beta decay on abundances of r-process nuclides
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Modeling NMEs starting from operators from chiral EFT

The flow chart of our
theoretical framework

talks by Y. X. Zhang, X. Lian

Ovpp decay
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talks by CRD, X. Lian
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» 2B+3B nuclear forces
» Transition operators
» PT-violate potentials
> ..
CEVNS
VS-IMSRG+PGCM: see talk by X.C. Cao X talks by CRD /
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Chiral EFT: Nuclear Force
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K. Hebeler, Phys. Rep. 890, 1 (2020)
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PGCM IMSRG i<T<k \‘ Wy + Wy + W,y +
Wave Evolved Vig + Vo + Vg + -
function _l\_ —/L operator 1.
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* Low energy constants C150, C3s1, C150, C3po, C1p1, ===
NME/ : s
Observable Determined by fitting C3p1, C351, C351—-3p1, C3p2 -
scattering phase shift. €1, €3, €4 Cp CE
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Similarity Renormalization Group(SRG)

Nuclear force O Modeling nuclear structure and decays based QG’G L.
on operators derived from chiral EFT acrossthe e
@ Operator energy scales from 102 MeV to 10~ MeV ‘
0.043
PGCM o PR e
» Similarity renormalization group (SRG) B
Reference . -
In the center-of-mass (CM) frame, apply unitary .
state ) ) k’ Relative momentum
transformations U, to decouple the coupling =
IMSRG between high and low-momentum states : > X
n S. K. Bogner et al,
@ v Hy = UgHyUg = Ty + V5. PPNP 65(2010)94-147
i
PGCM IMSRG _ dH,
The flow equation = [ns, Hl, N = [Trer, Hl. AN A
Wave Evolved S x 3 .
function \I_I/ operator Evolution of the potential Flow parameter s is usually replaced
NME/ TV (e ke - with 2 = s~%4 in units of fm 1.
Vs(k, k') = —(k? = k"?)V,(k, k") +E 2dq(k? + k'? — 2q2)V,(k, @)V,(q, k")
Observable ds s\, - q-aq q-)Vs\K,q)Vs\q, " ).
0
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Similarity Renormalization Group(SRG)

Nuclear force > N3LO(600MeV) momentum-space potential (1S0 channel)
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IMSRG » AV18 and N3LO(500MeV) potential (351 channel)
120
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-30
Wave Evolved 60, e 5
function@ operator r(fml r(fml
NME/ K.A. Wendt et al, Phys.Rev.C 86(2012)014003
Observable The hard core “disappears” in the softened interactions.
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Projected Generator Coordinate Method

O On HO basis, constrained Hamiltonian Ring and Schuck, The nuclear many-body problem, 1980

(®|H|D) = (@ [H — Z AN

@ Operator T=Nn,p
/ Solve HFB equation and obtain HFB states

Nuclear force
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PGCM | — with different deformations.
Reference 0 Wave function of a nuclear state ( S sy sy \
state JMNZ J Projection iUMNZ' q) = Fyo P7 P71 P(q)),
WY =N fl (@) UMNZ, Q) g
IMSRG 7 |
I
Solve Hill-Wheeler-Griffin (HWG) equation '
{ } NZ ] ]
, , , Hyo(q,q") = (@(q)|HE;, PV PZ|D(q")
PGCM || IMSRG > [Ho(@.a) - EsNgy(a.adlff @) =0 | ™ &

q N, (q.q") = (D(q)|B), PN PZ|d(q"))

Wave Evolved

function@ operator

NME/ R o 2

Observable The 2B density [pijkl]ﬂ = <‘Pé M NZ| [cjcfclck] |LPéMNZ>
u

7 Chenrong Ding

!/ / /1
O The 1B density [pij]i = <‘Pé M NZ| [C;rcj] |LpéMNZ>
U




In Medium SRG

Nuclear force O Unitary transformation H, = U.HU! MR-IMSRG
e 0) o) [080) [of) ) [82) [6) [o3c)
. s s | &
@ Operator Flow equation = [ns, H] USHU" ()
ds 5 ' 5
PGCM O Generator 7, : chosen either to decouplea | & ¥
. . . . & S = i
given reference state from its excitations or | 4= > S
Reference to decouple the valence space from the
state excluded spaces.
H. Hergert et al., Phys. Rep. 621, 165 (2016)
IMSRG
If choosing a HF state as the
@ reference state. one has Core Valence Outside MDSINSHG Core Valence Outside
v ’ g U(s)HU' (s)
I \U(O) _F \U(O)  +
PGCM IMSRG 0 | Vitaet ) = Eo [Winact *
S
Wave Evolved l S B
function@ operator . 3
H(oco) [®ur) = Eo [Pur)
NME/ S. R. Stroberg et al., Annu. Rev. Nucl. Part. Sci. 69, 307 (2019)
Observable About VS-IMSRG: also see the talk by X.C. Cao
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Evolution of Operators

[ During IMSRG process
Nuclear force
(@o| ol @0) = (@ |UsAUI| @5) = (@c] A @c) By 19) = Uil
@ Operator
[ For operators
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Wave Evolved 1 0.5
function@ operator Sl
L] R 0.0 " J. M. Yao et al., Phys.Rev.C
NME/ (a) GT (b) Fermi | —0.4 () Tensor | | 103 (2021) 1, 014315
Observable 1o 2J?h]4 56 90 2]?71]4 56 01 2J?h]4 56
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Application: Low-lying States
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E. F. Zhou, CRD et al., Phys.Lett.B 864 (2025) 139464
[ These pictures reveal how deformed ground states emerge naturally with the IMSRG

evolution of the initial chiral two- plus three-nucleon interaction EM1.8/2.0.
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Shape Coexistence in Mg Isotopes

E. F. Zhou, CRD et al.,
Phys.Lett.B 864 (2025) 139464
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Boundary of Island of Inversion
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E. F. Zhou, CRD et al., in preparation

» Nuclei inside the island of inversion: 30Ne, 29,31,33Na,
31,32,33,34Mg, and 35Al.

» Nuclei outside: 29F, 29Ne, 30Mg, 31,33Al, 34,35Si, and 35P.
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Application to Ovf [ Decay

- The Ov[3[3 decay operators in the
O 0vBg decay: ‘ chiral EFT
Power , — 24421 — 243 (X 4 d—2+n)
-
D Effective neutrino mass: e” Standard mechanism of exchange light Majorana neutrinos
Long-range (LR) Short-range (SR)

LO

3 5 1/2
mggll = > 02 my| = |~
PP = 7 gaGoy Ty | MOV |

0 Nuclear matrix element(NME):

(1) (2)
Correction to current ~ one-loop diagrams

N2LO

A (4) (5) Cirigliano+(2018) | (6)
MOV — (LIJF|OOV\|LIJI) |

N3LO

L,

Decay operator C3,C4 CD

two-body current
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IM-GCM for the NME of 136Xe

sf | — ocom: / ] (0T — oot — amsze] | The NME by the VS-IMSRG: [1.08-1.90]
_ ol Xe, eMaxio(T=0") fy | | 1%Ba, eMax10(J* —0%) | a factor of about two uncertainty
z Fax 3 !
0 The NME by the o B ! | —e— VS-IMSRG
MR-IMSRG + PGCM ’ 010  —005 000 005 010 015 “_,]1.. 005 000 005 010 015 :;3.11 . —& IM-GCM
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1.62 8+ QRPA 1
+ 118 + —&—
2 261 2] 079 0.56 —<— NSM
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CRD et al., in progress 136y o 1 136 34, v— EDF
L J 6 —¢— GCF -
| —8— EFT
q°/A° 2 /A2 /N
Long-range (LR) Short-range (SR) correction to current one-loop diagrams n/pt P ;. D A : v |
L o TiRKA > Y
= L X ™ 3 4 _
(1>// @ €] (K] @ ®) i ”(,)) ! E . |
LO long-range LO contact term  Part of N2LO Residual N2LO NO2B N3LO Total "’
neutrino potential neutrino potential neutrino potential neutrino potential neutrino potential NME ’ o i 1
2t 4 s :
EM1.8-2.0 i T a3
.8-2. ) } A
eMax10 1.07 0.42(8) 0.07 0.17 0.32(3) 1.27(11) / .
q4/3/A4—/3 ]
O i
N2L0GO394 '
eMax10 0.88 0.39 (7) -0.07 0.17 -0.09(1) 1.28(8) N _
a3/ A3 MY ME+MBl MY ME+MY

Hoferichter et al, PhysRevD.102.074018(2020) #"2)~ #)+6@. s 20 =~ Ll foito. Nudeartiodes
A. Belley et al., arXiv:2307.15156(2023)
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Uncertainty Quantification of EFT Truncation

Assume the NME could be described order by order by y = y,..¢ Y. ¢, Q"

* ¢, is the coefficient with natural size. * ( is the expansion factor.

If we can calculate NME up to k-th order, how to predict the truncation error Ay, = y,or Xn-p 41 nQ"

i i CRD et al., in progress
[ Bayesian inference P(A|B) « P(B|A)P(A) prior Prog
A-GO(394)
sol 95%C.L.
m 68%C.L.

Hyperparameters Posterior Likelihood

€ {v,7%} € {a, b}

25 = ©\lean value
-2 2
| Olag~x > (v, 8) . .
€ {2} ) Conjugate Prior . 20Ff
.o | cg|60~N(0,0°) J. A. Melendez et al., = sk
Jpammeterizaﬁon PRC100(2019)044001 o — 027
\ 1.0}
@ After the inference
05 F 136X
) c
S 5 5 Q =042,y =127, =5
\ / \ 01ci ~x (v, 7%), 0.0} .
| 1
_ 2 _ 2, 22 NLO N2LO
V= VO + le, v = VOTO + Ck Chiral order

* Uncertainty quantification by the BUQEYE method.
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MR-IMSRG: Developments & Applications
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Collaborators: B. Bally, S. K. Bogner, H. Hergert, C. F. Jiao, H. Z. Liang,
T. R. Rodriguez, C. C. Wang, J. M. Yao, E. F. Zhou. Thank you f or your attention:
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