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Introduction: Why B decay?

O Nuclear B decay (including beta+/- and EC) is one of
the most important decay modes of atomic nuclei.

O Precise knowledge of nuclear 3 decay is essential for
understanding the stability of atomic nuclel, the origin
of elements heavier than iron, and the search for new
physics beyond the Standard Model.

The CKM matrix: from flavor
eigenstates to mass eigenstates :
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Introduction: Theoretical studies of nuclear weak processes

O Nuclear matrix elements are crucial for interpreting experimental signals. L

[ Towards an accurate calculation of NME
 Transition operators: determined by weak interactions

« Wave functions: obtained from nuclear structure models e = t
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Introduction: Theoretical studies of nuclear weak processes

OMost widely used methods to compute beta decay properties:

Interacting shell model (ISM)
Proton-neutron (Q)RPA
Projected shell model (PSM)

Projected generator coordinate method (PGCM)

Size of Single-particle basis

Number of Slater determinants

Its capability to microscopically describe
collective behaviors and its adaptability to
explore different degrees of freedom in nuclei.




Introduction: PGCM for nuclear weak processes

O The PGCM, combined with ab initio in-medium SRG, has been applied to
compute the nuclear matrix elements of neutrinoless double-beta decay.
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Introduction: PGCM for nuclear weak processes

ORecently, the PGCM has been extended to describe Gamow-Teller (GT)
transition strengths in even-even nuclei.
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Introduction: PGCM for nuclear weak processes

OThis work: Extension of the PGCM for the single-beta decay of odd-mass nuclel.

O\We benchmark the PGCM calculation using a shell-model Hamiltonian for which
exact solutions are available.
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The PGCM framework

« The wave functions of low-lying states :
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linear combination coefficients of the linear combination

* Symmetry-projected quasiparticle vacuum
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« The mean-field configuration for an odd-mass nucleus:
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« Exchanging the k-column of the U and V matrices in the HFB wave function:
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The PGCM framework

PNVAP+HFB:
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“\. Constraints q :quadrupole deformations B;

octupole deformations; pairing content ...

The weight functions are determined by varying the ground-state energy for
HWG equation:
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Nuclear beta decay

O The half-life of nuclear B decay phase-space factor (electron)
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Numerical detalls

Comparison between Shell Model (SM) calculations and PGCM approach.

» Same effective Hamiltonian defined in the same valence space (USDB
Interaction in the sd-shell)

» Benchmark of the PGCM method against exact SM calculations results.

» Exact SM calculations performed with the Bigstick program.




Application to °P and 2°Si
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» Energies of one-quasiparticle states with K* = 1/2* from the HFB calculation and the
energies of low-lying state with J® =K™ = 1/2* from the PNAMP calculation, with
projection onto correct particle numbers and different angular momentum Jrt , as a
function of the quadrupole deformation parameter 2.




Numerical details
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» Check the plateau condition for
the ground-state (1/2+) energy
in the GCM calculation.

» Different choices of the number
of natural states in the GCM
calculations have a negligible
Impact on the distribution of the
collective wave functions.




Application to the low-lying states of °P and #°Si

SM IMSRG+GCM  GCM HFB(Sph.)
29p  _144.21 —145.71 —142.82  —139.00
29§ —144.21 —145.78 —142.73  —138.98
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» The IMSRG evolution shifts down the entire low-lying states, even though too
much, which is probably attributed to the NO2B approximation in the IMSRG.




Application to Gamow-Teller transition
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Application to Gamow-Teller transition

» The NMEs of Fermi and GT transitions by the GCM and IMSRG+GCM are
as follows:

Exp. SM  IMSRG+GCM GCM
M(F) 1 1 0.995 0.992
M(GT) 0.5380(21) 0.513 0.478 0.519

» The NMEs by GCM with and without the IMSRG are not much different
from the results of SM, even though the IMSRG evolution worsens the
agreement for the GT transition.




Uncertainty analysis
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Summary and outlook

O\We have extended the PGCM for the beta decay of odd-mass nuclei.

OWe have benchmarked the GT transition of 2°P using the USDB shell Hamiltonian.
We observed some discrepancies between the results of the PGCM and SM
calculations. However, we also observed a large uncertainty in the NME
originating from the PGCM calculation.

OOutlook:
» Reduce the uncertainty in the NME by the PGCM (Enlarge the model space).

» Implementation of operators from chiral effective field theory.

Thank you for your attention!
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