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II Chart of nuclides

Nuclear Chart: decay mode of the ground state nuclide(NUBASE2020)

[] Observed nuclide (~3140)
[[] Mass known (2552)
I Stable
B~ decay
[ 8" or EC decay

o decay
[ spontanous fission
B neutron decay
B proton decay

decay mode: ?
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II S process: branching point ,

nucleosynthesis 865y | 875y Lyl 85 || 89S
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Proton number

I s process: thermometer
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II r process: core-collapse supernova
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@ Reduce pressure from degenerate relativistic
electron gas

Kte =AY+

@ cooling environment by neutrinos

@ drive the composition to be more neutron-rich



II rp process: accreting neutron star

v' X-ray bursts

v' X-ray pulsars

EC: 2X+€7 - Z§1Y+I/€,
8 AY = Xte +7,

H. Schatz et al., Nature (2014)
L.-J. Wang et al., Phys. Rev. Lett. (2021)




I rp process: waiting-point nuclei

X-ray bursts: | S0y |
H and He are fused eplosively up to Te
within short time (10-100s)
Energy production through rp-process
Rapid proton captures vs. beta decay
Duration and the shape of o
the observed light curves
NN
69Br:| J98r|| 71Br]| 72Br]| 73By|
s, (keV) <4 One-proton separation energy “641(42)
| oyl | 6| 63el| el | 705e] 8%, (keV) <— ‘l[dv;;:;pr:‘f;mn sreparation energy 4,250(42)
N A"EL < Element name 2Br
64ad| 65h hd| 744 65a. ~————— Proton number
. (p.) proton capture - =
ofd| 54| ofsd| %4 Astrophysical rp-process H Sraaen | | ieiin| (IR
\i & H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001) * () photodissociation 66 7 68, 3
. Schat al., Phys. Rev. 3 H
oUfsq| S84 63G4| *G and references therein \ B decay 34Se 31Se 315e
| 53Zr“ 5914 1 ?f;,, 627, D waiting points due to AV A
wp 21(11) -221(42) 2,836(6) 2,269(2)
slow beta decay nucleus 2,301(110) 4,837(42) 7.770(6) 8,508(1)
= 64 65 66 67
N= Proton- 33As 33As 3As 33As
unbound
nucleus AV A
D ‘Na‘:::“mm 2,280(15) 2,934(3) 6,239(3)
. » . " 5,207(22) 8,843(3) 10,181(2)
rom Jokinen's slides AMEZ0 o o5 o6
f Mass 3Ge e »Ce 2Ge
measured
for the first time A A
Mass 2,927(16) 2,668(1) 3,908(2) 3,942(1)
uncertainty 8,220(2) 9,141(2) 10,623(2) 11,656(1)
improved 62 3 64 65
£Ga $Ga $Ga 5 Ga

X. Zhou et al., Nat. Phys. (2023) 0



II Stellar sites and conditions

& s process: Rev. Mod. Phys 83, 157 (2011)

= AGB star and/or Core He & shell C of massive stars

= pY, 22 10274 mol/em3? T a2 0.5 GK? low magnetic field?

& p process: Phys Rep 294, 167 (1998); Science 355, 817 (2017)

w Accreting neutron stars (LMXBs and/or HMXBs)

15 pY, ~ 10°~7 mol/cm?? T ~ 1.0 GK, high magnetic field (105714 G)?

@ 1 process: Rev. Mod. Phys 93, 015002 (2021)

= Core-collapse supernovae and/or neutron-star merger and/or magnetar

15 pY, ~ 107" mol/cm3? T ~ 3.0 GK, high magnetic field (10'2717 G)?



II Stellar weak rates: many aspects w o

20spy, | [ 206p,
17.3 My,
N
o

3783yr

203 (i
[0 stable \T(" )
hiad [ Unstable N\ 0

3/2 1292 kev
1099 keV/

Proton number
=2

L3 122 123 124 125 126 Qgs =764 keV
%9Co Neutron number
Gao et al., PRL 126, 152701 (2021) Xiao, LJW, PRC 110, 015806 (2024)

@ Ground states, low- & high-lying states.
@ Allowed & (1°) forbidden transitions.

A= Z/: G(Z,AT) if 1

- In2 [%rf - 2 v

N = % C(W)F(Z,W)pW (Qiy — W)L — So(W)]dW.
J1

@ High density and temperature, Strong magnetic field.

@ Systematical calculation from light to heavy nuclei.
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II Stellar weak rates

ﬁ_:/ZlX_)Zle+e_+ﬂP7 EC:§X+€__>2111Y+VR,

BrogX =AY +e +u, PC: )X +e" — Y +7,
[
@ Without magnetic field:
a (2‘]/ = l)eiEi/kBT « Py
A= Z G(Z,A,T) Ay
if
Px
»  In2
A= 2 / C(W)Fy(Z + 1, W)pW (Qip — W)[L — S.(W)]dW,
1 2
AEC = T (Z,W)pW (Qif + W)2S.(W)dW,
g+ In2
b / C(W)Fy(—Z + 1, W)pW (Qiy — W)2[L — S,(W)]dW,
PC 1117
A = C(W)F[) —Z, W)pW (Qif + W)2S,(W)dW,
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1 /mee\3 [ 9 1
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II Stellar weak rates
ﬁ_:/ZrlX%Zle_‘_e__‘_ﬂﬁ EC:§X+€__>Z§1Y+VR,
BY X =AY vt o, PC:§X+6+%Zle+17@,

P, Pz
& With strong magnetic field: Hu, Low* Sun: PRL (2025)
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- Gz, AT) Y
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) In2 g+ Voo ‘ /@ —1-2nB" N
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n=0 0
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EC In2 B* . iy "
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" In2 B* Ve V3 -1-2nB ) ) N
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II Stellar weak rates

B X = Y +e +m, EC:9X+e = AY 4w,
BrogX =AY +e +u, PC: )X +e" — Y +7,

p. P: P
@ With strong magnetic field: Hu, LW, Sun: PRL (2025)
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II Allowed transition: quenching puzzle

@ For allowed GT transition with [AJ| =0,1; Ar = +:

2

ny sk ||\
L ITRCELIA DO L
O(W ) a B(GT )zf a <.{]V>eff ZJ, +1 (18)
@ Transition operator quenching:
ga _ ga
<;)eff N fquench (g\/)bare (19)

where (gA/gV)bare = —127641(45) fquench =~ 0.75.

Martinez-Pinedo et al: PRC (1996R); Gao, Sun, Chen: PRC 74, 054303 (2006);
L.-J. Wang, Sun, Ghorui: PRC 97, 044302 (2018)

Tan, Liu, L.-J. Wang*: PLB 805, 135432 (2020)
Chen and L.-J. Wang*: PLB 848, 138338 (2024)
L.-J. Wang, Tan, Li, Misch, Sun: PRL 127, 172702 (2021);

Brown, Wildenthal: ADNDT (1985);



II First-forbidden transition

For first-forbidden non-unique (JAJ|™ = 07,17) and unique (JAJ|" =27):

CW) = (k+ kuW + kbW + mv’")[q2 + \op?]
k= [Co *TU ] [Cl

A 2 1 o2
+ 18”0 (2z +u) 18/\2(2m u)?]
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1 i
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2
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1
V=&v+ew, (=V+ ngVo,

1
—(u — z)Wp.

Y=gy—f/+o), G=Y+g

H. Behrens, W. Biihring, NPA 162, 111 (1971);

Suzuki, Yoshida, Kajino, Otsuka, PRC 85, 015802 (2012);

Q. Zhi, E. Caurier et al., PRC 87, 025803 (2013);
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N V2J+1
(5 3red (ri)[CF ® oM]' 72 2)
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Gao, Chen and L.-J. Wang*: PRC (2023);

z2 =294

€=

&y =

B.-L. Wang and L.-J. Wang*: PLB (2024);



II First-forbidden transition: quenching puzzle

@ Shell-model quenching factors:

fq(§'v) = 1.266, fo(w) = f,(w") = 0.66,
fol@) = fo(a") =051, f,(u) = f,(u)=0.38,
folz) = 0.42.

Zhi, Caurier, Cuenca-Garcia, Langanke, Martinez-Pinedo, Sieja: PRC 87, 025803 (2013)

B.-L. Wang, LJW*, PLB (2024)
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II s-process: branching-point and thermometer 176Lu

Exp PSM

176LLl S
AN 853
Qy=1190keV/ —
6 597
AN 496
4 2%
.. 235
2 8 2
o o ___
176Hf

» Anomalous strength:
the only two strange first-forbidden
transitions with Log ft > 12 in the
known evaluated nuclear databases

The logft value, the configuration mixing percentage, and the average K value K, from
the PSM calculations with different configuration spaces (no mixing case, small configura-
tion space and large configuration space, respectively) for the 7= — 6 (8*) first-forbidden

transition of '"Lu. See the text for details.

Transition 7 — 67 (8%)
No mixing Small Large
log /1 19.95 17.82 19.42
(21.69) (17.29) (17.49)
Configuration mixing 0 3.96% 39.16%
0 (0) 55.11% (64.00%) 66.36% (72.96%)
R 7 6.824 6.809
0 (0) 0.197 (0.320) 0.252 (0.276)

J-W. Ran, LJW*, Phys. Lett. B (2026)
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I rp process: waiting points

X-ray bursts: | S0y |
H and He are fused eplosively up to Te
within short time (10-100s)
Energy production through rp-process
Rapid proton captures vs. beta decay
Duration and the shape of | 69](4 ok | 7ed | 72| 73 | 7t | 75
the observed light curves SIS K[| 7K
NN
69Br:| J98r|| 71Br]| 72Br]| 73By|
s, (keV) <4 One-proton separation energy “641(42)
| oyl | 6| 63el| el | 705e] 8%, (keV) <— ‘l[dv;;:;pr:‘f;mn sreparation energy 4,250(42)
N A"EL < Element name 2Br
64ad| 65h hd| 744 65a. ~————— Proton number
. (p.) proton capture
6 64 65| 6 - * 2,485(74) (21) 4,891(1)
| 5454 Gy Astrophysical rp-process 22aa6n | | deasco | [EEEESE)
\i & H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001) * (rp) photodissociation 66 67 68
oUfsq| S84 63G4| *G and references therein \ B decay 34Se 31Se 315e
| sxz,.“ 5914 1 hl" hicd D waiting points due to we 21(11) -221(42) 2,836(6) 2,269(2)
slow beta decay nucleus 2,301(110) 4,837(42) 7.770(6) 8,508(1)
= 64 65 66 67
N= Proton- 33As 33As 33As 3As
unbound
nucleus AV A
D ‘Na‘:::“mm 2,280(15) 2,934(3) 6,239(3)
5,207(22) 8,843(3) 16,1812)
"y 't ’ 7, AME20
from Jokinen’s slides e $Ge . $5Ge s5Ge
measured
for the first time A A
Mass 2,927(16) 2,668(1) 3,908(2) 3,942(1)
uncertainty 8,220(2) 9,141(2) 10,623(2) 11,656(1)
improved 62 63, 64 65
£Ga $Ga $Ga 5 Ga

X. Zhou et al., Nat. Phys. (2023)



3B (GTY)

3B (GT")

I Waiting points: B(GT) distribution

t
xp (gs.)
up to 6ap (:5.)
-~ ~upto2qp(gs) ]
..... upto 6ap (27)

. Ui W = "
01234567 801234567 280123456 780123 45¢6 738
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Chen, LIW*, PLB (2024)
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Enrique Nacher Gonzdlez,
Instituto de Fisica Corpuscular, CSIC - UV

(Private Communication)



I Waiting points: weak rates
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g, quenching puzzle

l 2
)\ff i (Z+1,W)pW(Qif — W)[1 — S.(W)]dW,
EC ln 2

ANf = / C(W)Fy(Z, W)pW (Qip + W)2S.(W)dW,

@ For allowed GT transition with |AJ| =0,1; A7 =+

2 (V|| Sy ohh o)’

CW) = BT = (£) s

v/ eff

@ Transition operator quenching:

(2). o)
gy/ei T\ gy bare

where (g4/gv)bare = —1.27641(45). fquench = 0.75.

84, eff

R(GT) Bxpt.

0 L L I .
'%AO 02 0.4 0.6 08 1.0
R(GT) Theor.

FIG. 1. Comparison of the experimental matrix elements
R(GT) with the theoretical calculations based on the ‘‘free-
nucleon’” Gamow-Teller operator. Each transition is indicated by a
point in the x-y plane, with the theoretical value given by the x
coordinate of the point and the experimental value by the y coordi-

nate. Martinez-Pinedo et al., PRC (1996)
1.4

[ O from expenmental 712 (ISM)
120 0 g't™M=1.26947"

t m/a from experimental 7y, (IBM—2 CA/SSD)
1.0 gPM221.26947"!
0.8}
0.6¢
041
0.2
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40 60 80 100 120 140 160

Mass number




II Chiral two-body current ® &*%’

@ [-decay transition matrix element:

. G, .
(I = =22 [ @ (Ve )| 0aan) (38)
-;T--+— %—A
one-body 7+ two-body

¥ Menéndez, Gazit, Schwenk: PRL (2011);
L.-J. Wang, Engel, Yao: PRC (2018R);
Gysbers, Hagen, Holt et al., Nature Phys. (2019)
Ney, Engel, Schunck: PRC (2022)

JEIN
H. Zhou, L.-J. Wang*, Y. Sun: arXiv:2509.24542




I g, quenching puzzle: two-body currents ?

b s 7 255, “Cag
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r dsat 3 .
PRSI SE— o LRel® 5 o < Vo = ©Tigy
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- Ref. Ny = Ti
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O «—==—— ( lesem ¢ 0 10g, - g,
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1 L A H [ Losm aT+ 280 o, — i,
— H ¢ 0 Ty = 950,
H aRPA e T
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v - FFS. 46, i
M| ratio to experiment 0 T T So, — “Ti,
s 7 s w1 15 1 1 0 1 2 3
Wl Fig. 2| Gamow-Teller strengths in light nuclei. Theory-to-experiment |Mg:| theory (unquenched)
ratio for the Gamow-Teller matrix elements of six strong transitions in
Fig. 1] Gamow-Teller strength in®%Sn, Comparison of the Gamow-Teller light nuclei for the NN-N'LO +3N,, interaction developed i this work.

nuclei. Comparison

Gysbers, Hagen, Holt et al., Nature Phys. (2019)




II One-body and two-body currents

Tu(@) = —ga ZUIT 5(x (39)
Tn(@) =i Ju(@), (40)
Tul@) 2@;11:1;2 [ T o i) Yalr) — %Yg(r)) n %5(7»)] (@ —r) + (k1)
(et i);’n% [2((% - o x don. ) alr) = %)) + Z26(0) |70t — 1) + (kD)
4m( F)2 [Q(II(Gka +oT)+ (ZQGXT;] 3(r)o(x — 7). (41)

LJW, Engel, Yao, PRC 98, 031301(R) (2018)



Accumulated strength

I For deformed nuclei

T T T T T T T T T T T
3.0 Exp "Ge *>76ASI
®  With error bar (indiv.)
®  With error bar (bins)
251 2qp OBC (0.15,-0.28)
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20+ With TBC (3.4, 3.4)
With TBC (4.78, 3.96)
150 I win TBC (32,5.4)
1.0F
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0.0 L L L ! L L L L L L
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E,(MeV)

Zhou, LIW* Sun, arXiv: 2509. 24542
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II High-lying region
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Zhou, LJW*, Sun, arXiv: 2509. 24542
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II Summary and Outlook

» Basic ideas and pictures of the stellar weak rates.

»  Effect of strong magnetic field on stellar weak rates of the
rp-process waiting-point nuclei.

»  Effect of chiral two-body currents on GT transition.

» Nuclear y-ray strength function.

»  Chiral two-body currents for 8 decay and y transition.







