

Optimization of dynamic aperture for the ESRF upgrade

Andrea Franchi on behalf of the ASD Beam Dynamics Group

Workshop on Accelerator R&D for Ultimate Storage Rings October 30-November 1, 2012 Huairou, Beijing

European Synchrotron Radiation Facility

Outlines

- The Hybrid Multi-Bend (HMB) lattice
- Nonlinear optics: existing ESR SR Vs HMB lattice
- Optimizing dynamic aperture

Outlines

- The Hybrid Multi-Bend (HMB) lattice
- Nonlinear optics: existing ESR SR Vs HMB lattice
- Optimizing dynamic aperture

Double-Bend Achromat (DBA)

- Many 3rd gen. SR sources
- Local dispersion bump (originally closed) for chromaticity correction

Andrea Franchi

Optimization of dynamic aperture for the ESRF upgrade 5

Andrea Franchi

Andrea Franchi

Outlines

- The Hybrid Multi-Bend (HMB) lattice
- Nonlinear optics: existing ESR SR Vs HMB lattice
- Optimizing dynamic aperture

 $\Delta \varphi_x = (2n+1)\pi$ to minimize <u>at the cell ends</u> the Resonance Driving Terms from x^3 (f_{3000} and $f_{1200} \approx 0$) => elliptical horizontal phase space

 $\Delta \varphi_x = (2n+1)\pi$ to minimize <u>at the cell ends</u> the Resonance Driving Terms from x^3 (f_{3000} and $f_{1200} \approx 0$) => elliptical horizontal phase space

+

 $\Delta \varphi_y = n\pi$ minimize those from xy^2 (f_{1020} and $f_{0120} \approx 0$) rendering vertical phase space elliptical too [$f_{0111} \approx 0$ from $\Delta \varphi_x = \pi$] ...

 $\Delta \varphi_x = (2n+1)\pi$ to minimize <u>at the cell ends</u> the Resonance Driving Terms from x^3 (f_{3000} and $f_{1200} \approx 0$) => elliptical horizontal phase space

 $\Delta \varphi_y = n\pi$ minimize those from xy^2 (f_{1020} and $f_{0120} \approx 0$) rendering vertical phase space elliptical too [$f_{0111} \approx 0$ from $\Delta \varphi_x = \pi$] ...

... provided that second-order (octupolar-like) RDTs are kept low

no harmonic sextupoles

 $\Delta \varphi_x = (2n+1)\pi$ to minimize <u>at the cell ends</u> the Resonance Driving Terms from x^3 (f_{3000} and $f_{1200} \approx 0$) => elliptical horizontal phase space

This constraint does not help minimize amplitude-dependent detuning generated by second-order cross-products of sextupolar terms within the cell [$\propto \cos(\Delta \phi_x)$, $\sin(3\Delta \phi_v)$, ...] and across other cells.

no harmonic sextupoles

 $\begin{array}{rll} dQx/dJx &=& 100 \times 10^3 & d^2Qx/dJx^2 = & 5.\ 9 \times 10^9 \\ dQy/dJx &=& -80 \times 10^3 & d^2Qy/dJx^2 = & 29.\ 3 \times 10^9 \\ dQy/dJy &=& 40 \times 10^3 & d^2Qy/dJy^2 = & 0.\ 9 \times 10^9 \end{array}$

HMB lattice (V107)

2+4 chromatic sextupoles, no harmonic sextupoles

HMB lattice (V107)

2+4 chromatic sextupoles, no harmonic sextupoles

Outlines

- The Hybrid Multi-Bend (HMB) lattice
- Nonlinear optics: existing ESR SR Vs HMB lattice
- Optimizing dynamic aperture

Outlines

- The Hybrid Multi-Bend (HMB) lattice
- Nonlinear optics: existing ESR SR Vs HMB lattice
- Optimizing dynamic aperture

very preliminary, focused on horizontal DA only, not yet optimized in vertical plane and energy deviation.

Lattice errors: focusing errors from H & V (6μ m RMS) displacement of sextupoles generating ~2% peak beta-beating & 5% coupling, no sext. field errors, orbit corrected.

 $\begin{array}{rll} dQx/dJx &=& 100 \times 10^3 & d^2Qx/dJx^2 = & 5. \ 9 \times 10^9 \\ dQy/dJx &=& -80 \times 10^3 & d^2Qy/dJx^2 = & 29. \ 3 \times 10^9 \\ dQy/dJy &=& 40 \times 10^3 & d^2Qy/dJy^2 = & 0. \ 9 \times 10^9 \end{array}$

30

Optimizing dynamic aperture

Optimization of dynamic aperture for the ESRF upgrade 23

Andrea Franchi

European Synchrotron Radiation Facility

Optimizing dynamic aperture

HMB lattice (V140-T3)
swapped centre quad <-> sext.
added thin octu- and dodeca-pole
lower cross-term detuning

Optimizing dynamic aperture

HMB lattice (V172-F)
octupole component in QD0 added
long. gradient in dipoles

lower cross-term detuning

Optimizing dynamic aperture

Optimizing dynamic aperture

Conclusion

- lattice design in advanced status of development
- (standard) magnet requirements within reach of existing technology (100 T/m for quads, 2kT/m² for sexts)
- dynamic properties already compatible with present injection system
- good energy acceptance
- lattice still evolving to further improve its performances and to match hardware constraints (diagnostic, vacuum, front ends, etc...)

Parameter	Existing Lattice	New Lattice
Energy, E [GeV]	6.03	6.03
Circumference, C [m]	844	844
Tune, v_x, v_y, v_s	36.44 , 13.39, 0.0054	75.60,25.60,0.0034
Emittance, $\boldsymbol{\epsilon}_{x}$, $\boldsymbol{\epsilon}_{y}$ [pm ·rad]	4000 , 5	160,5
Bunch length, σ_z [ps]	15.6	11
Energy spread, σ_{δ}	1.06 10 ⁻³	1.06 10-3
Momentum compaction	17.6 10 ⁻⁵	8.7 10 ⁻⁵
Damping time, τ_x , τ_y , τ_s [ms]	7,7,3.5	7,11,7.9
Natural chromaticity, ξx0, ξy0	-130 , -58	-97, -79
Energy loss per turn, Uo [MeV]	4.9	3.05
RF voltage, V _{RF} [MV]	8	6
RF frequency, <i>frF</i> [MHz]	352	352
Harmonic number	992	992
Beta at ID center, β_x , β_y [m]	37.6 , 3.0 (high β)	3.35 , 2.79
	0.35 , 3.0 (low β)	
Beam size at ID center, σ_x , σ_y [µm]	413 , 3.9 (high β)	24, 3.7
	50 , 3.9 (low β)	
Beam div. at ID center, $\sigma_{x'}$, $\sigma_{y'}$ [µrad]	10 , 1.3 (high β)	6.8 , 1.3
	107, 1.3 (low β)	

ESRF								A	Light for S	Science
# NAME	L	ANGLE	RO	BO	G1	G2	G3L	BETX	BETY	DX
#	[m]	[mrad]	[m]	[T]	[T/m]	[T/m^2]	[T/m^2]	[m]	[m]	[mm]
"QFMA"	0.25				93.71			4.16	7.21	4.3
"QDMA"	0.20				-87.77			2.33	11.39	2.9
"BPI1E"	0.35	9.89	35.38	0.57				1.52	12.67	3.4
"BPI1D"	0.35	6.89	50.76	0.40				1.16	13.73	7.2
"BPI1C"	0.35	5.40	64.86	0.31				1.03	14.85	13.1
"BPI1B"	0.35	4.20	83.40	0.24				1.15	16.03	20.6
"BPI1A"	0.35	3.60	97.30	0.21				1.50	17.27	29.6
"QDID"	0.20				-38.35			2.13	17.04	39.1
"SD1A"	0.30					-1808		3.84	13.44	55.4
"SF1A"	0.18					1885		10.05	6.87	92.9
"QF0"	0.15			-	55.29			11.59	5.86	100.0
"OCF0"	0.00	HMB	lattice				-13215	11.59	5.86	100.0
"QF0"	0.15				55.29			10.85	6.16	97.0
"SF1A"	0.18					1885		8.43	7.50	85.7
"OCF"	0.10						-11646	4.30	10.92	61.5
"SD1B"	0.30					-1808		2.17	13.99	43.1
"QD0"	0.20				-57.82			1.39	14.52	33.0
"BPI1A"	0.35	3.60	97.30	0.21				1.11	10.58	24.5
"BPI1B"	0.35	4.20	83.40	0.24				1.16	7.98	19.4
"BPI1C"	0.35	5.40	64.86	0.31				1.42	5.76	15.9
"BPI1D"	0.35	6.89	50.76	0.40				1.91	3.94	14.7
"BPI1E"	0.35	9.89	35.38	0.57				2.61	2.52	16.3
"QF1"	0.32				102.68			2.24	2.33	15.8
"BPI2E1"	0.35	12.74	27.47	0.73	-44.04			0.36	4.68	7.4
"BPI2E2"	0.35	12.74	27.47	0.73	-44.04			0.74	3.40	10.9
"QF2"	0.45				96.52			2.06	1.75	16.7
"BPI2E1"	0.35	12.74	27.47	0.73	-44.04			0.68	4.02	7.5

Andrea Franchi

European Synchrotron Radiation Facility

Optimization of dynamic aperture for the ESRF upgrade 31

ESRF

A Light for Science

# NAME	L	ANGLE	RO	во	G1	G2	BETX	BETY	DX
#	[m]	[mrad]	[m]	[т]	[T/m]	[T/m^2]	[m]	[m]	[mm]
SBEND	2.45	98.00	24.96	0.86			1.77	32.16	79.40
g1.qf2	0.94				7.86		26.48	16.34	111.60
g1.qd3	0.53				-12.14	•	7.81	33.34	59.54
g1.qd4	0.42				-12.10		10.87	28.24	219.10
g1.qf5	0.52				14.78	5	26.81	15.17	344.30
g1.qd6	0.52				-16.47	•	20.53	41.27	9.45
g1.qf7	0.92	ESRF S	SR		13.71	L	52.41	9.08	30.79
g2.s04	0.40					124.31	38.00	8.16	134.30
g2.s06	0.40					-165.15	18.85	22.20	93.90
g2.s13	0.40					-88.02	15.39	23.32	260.90
g2.s19	0.40					443.32	26.53	15.61	342.30
g2.s20	0.40					-419.43	14.37	27.19	250.60
g2.s22	0.40					-95.81	30.47	30.16	15.43
g2.s24	0.40					132.33	44.47	8.15	30.80

European Synchrotron Radiation Facility

... and its spectrum (FFT) measured

its normal sextupolar RDTs measured

European Synchrotron Radiation Facility

... and its spectrum (FFT) measured

its skew sextupolar RDTs measured

