

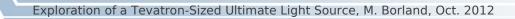
Exploration of a Tevatron-Sized Ultimate Light Source

Michael Borland

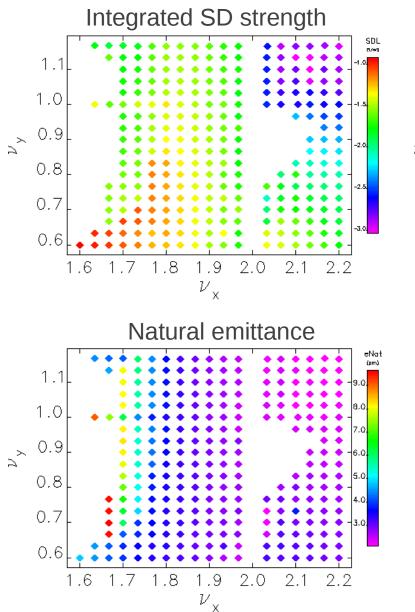
Argonne National Laboratory

October 2012

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.


Outline

- Concept
- Nonlinear dynamics optimization
- Analysis of microwave instability
- Performance predictions
- Potential APS upgrade
- Conclusion and questions


Exploratory "TUSR" Lattice

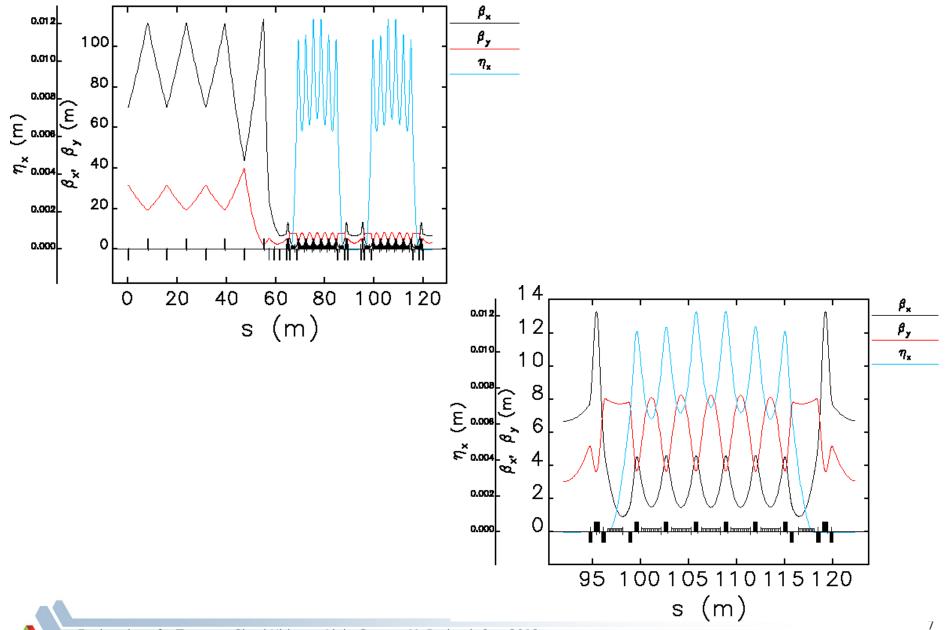
- Roughly match Tevatron geometry
 - 6-fold symmetry
 - 6.21 km circumference (vs 6.28 for Tevatron)
- All lattice modules are adapted from the PEP-X design^{1,2,3}
 - 30 MBA cells in each of six arcs
 - Larger bending radius
 - 180 ID straight sections (!)
 - Long straight sections use FODO cell
 - Six matching quads between arcs and FODO cells
- For cell tunes, started with Y. Cai's suggestion of $v_x = 2.166$, $v_y = 1.166$

¹M.-H. Wang *et al.*, Proc IPAC11, THPC074. ²Y. Nosochkov *et al.*, Proc. IPAC11, THPC075. ³Y. Cai, NIM A 645:168-174 (2011).

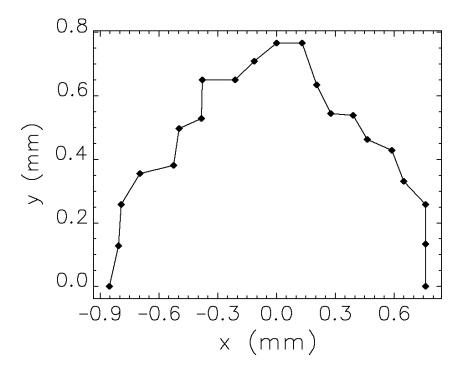
Scan of Cell Tunes (9 GeV)

- Integrated SF strength SFL 0/09 1.1 1.0 0.9 0.8 0.7 0.6 2.2 .8 9 2.0 2.1 $\nu_{\rm x}$
 - Original tunes per cell were x=2.17, y=1.17
 - Lower to 1.90, 0.90
 - 2.9 pm emittance
 - Sextupoles
 40~50% weaker

Nonlinear Dynamics Optimization¹


- Use tracking-based Multi-objective Genetic Algorithm (MOGA) to directly improve
 - Dynamic acceptance area
 - Touschek lifetime computed from local momentum acceptance for first arc cell
- Variables
 - Integer tunes
 - Fractional tunes
 - Three SF families
 - Five SD families
 - Three harmonic sextupole families
- Add quad strength and tilt errors to give ~1% lattice function beats, $\kappa{\sim}0.2$
- ID chambers with ±18mm by ±3mm gaps
- Chromaticities corrected to +1 in both planes

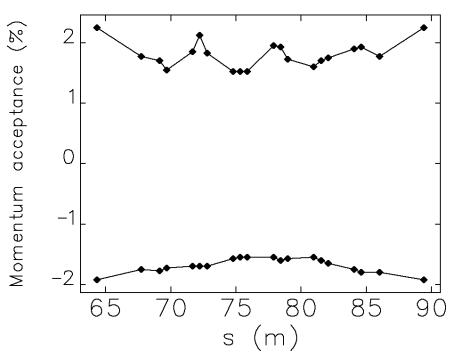
Typical lattice parameters


Betatron Tunes		
Horizontal	344.100	
Vertical	171.164	
Natural Chromaticities		
Horizontal	-476.675	
Vertical	-274.241	
Lattice functions		
Maximum β_x	113.354	m
Maximum β_y	39.925	m
Maximum η_x	0.012	m
Average β_x	13.542	m
Average β_y	7.555	m
Average η_x	0.007	m
Radiation-integral-related quantities at 9 GeV		
Natural emittance	2.918	\mathbf{pm}
Energy spread	0.096	%
Horizontal damping time	91.382	\mathbf{ms}
Vertical damping time	243.007	\mathbf{ms}
Longitudinal damping time	713.162	\mathbf{ms}
Energy loss per turn	1.535	MeV
Miscellaneous parameters		
Momentum compaction	5.979×10^{-6}	
Damping partition J_x	2.659	
Damping partition J_y	1.000	
Damping partition J_{δ}	0.341	

Exploration of a Tevatron-Sized Ultimate Light Source, M. Borland, Oct. 2012

Lattice functions

Dynamic acceptance



Optimization explored less than 500 configurations so far, so this may improve with more running time

- Adequate for on-axis injection if ε_{ini} < 2 nm
- Impacts gas scattering lifetime
 - Assume 0.5 nT and same partial pressures as APS
 - Predict 4.2 hour gas scattering lifetime¹

1: Computed using TAPAs, available from the Google play store (search for "Michael Borland").

Local momentum acceptance

- This is lower than the ±2% target
- Predicted Touschek lifetime is ~4 hours for 0.5 nC bunches and $\kappa{\sim}1$
 - Combined lifetime with gas scattering is ~2 hours

Magnet Strengths

- PEP-X design has combined function quadrupoles and sextupoles
- Here, we just look at strengths separately
- Sextupoles require ~12mm bore radius (using L=0.35m)

Name	Length	Gradient
		T/m
QD1	0.15	-53.79
QD2	0.17	▶-51.48
QD3	0.15	-59.37
QDS1	0.15	-13.00
QDS2	0.15	-39.93
QDS3	0.15	-15.29
QDSE	0.15	-6.61
QF1	0.28	62.62
QF2	0.20	93.26
QF3	0.20	71.71
QFC	0.20	72.04
QFS1	0.15	-6.15
QFS2	0.15	30.22
QFS3	0.15	7.58
QFSE	0.15	5.43

Name	Integrated Strength
•	T/m^2
SD1	-4139.60
SD2	-4066.24
SD3	-4014.99
SD4	-4140.59
SF1	6650.50
SF2	6730.27
SF3	6618.28
SH1	-9.43
SH2	2.02
SH3	25.70
SH4	-21.24
SH5	-3.77
SH6	10.65

Running with Round Beams

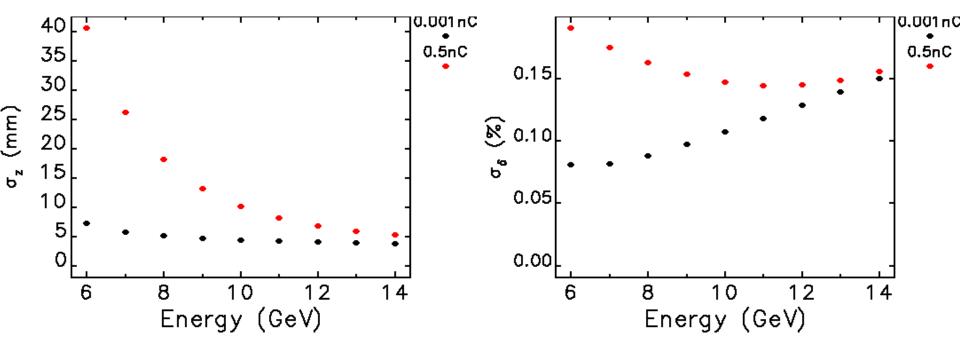
- There are various ways to make "round beams", i.e., $\kappa \sim 1$
 - Run on the $v_x v_y = N$ resonance:

• Pro:
$$\epsilon_x = \epsilon_v = \epsilon_0/2$$

- Con: hard to control
- Add a vertically-deflecting damping wiggler
 - Pro: wiggler will provide damping
 - Con: strong, long-period wiggler will impact energy spread, no sharing of $\varepsilon_{_0}$ between planes
- Add x-y emittance-exchange insertions outside of arcs
 - Pro: simple implementation, doesn't mess up cancellation of driving terms inside arcs

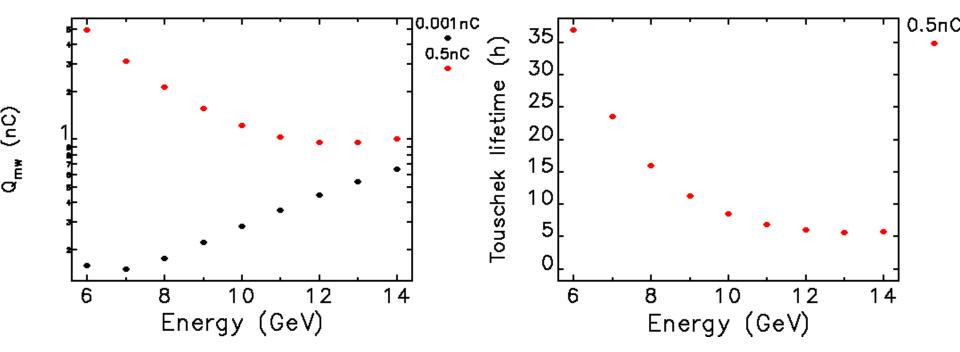
• Con:
$$\epsilon_x = \epsilon_y = \epsilon_0 / \sqrt{2}$$

- Of these, the EEX insertion seems preferable
 - Need to explore beam dynamics effects, however
 - Is it actually different from running on $v_x v_y = N$?

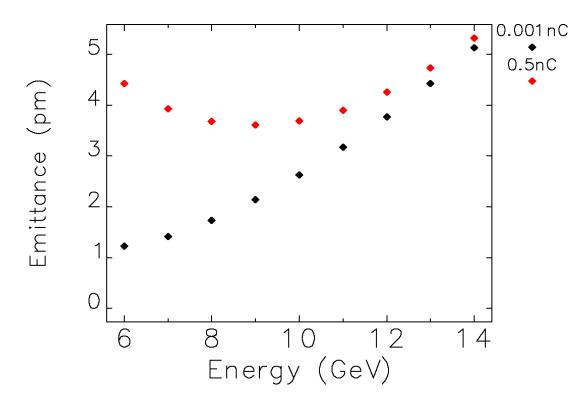

Collective Effects Estimation

- To estimate collective effects, we use some programs that come with **elegant**
 - haissinki¹: potential well distortion
 - **ibsEmittance**²: intrabeam scattering
 - touschekLifetime²: Touschek lifetime
 - Assume $\kappa = 1$
- We use $|Z/n| = 0.28\Omega$ (APS model)
 - Too optimistic if beam pipe is very small
- Microwave threshold is

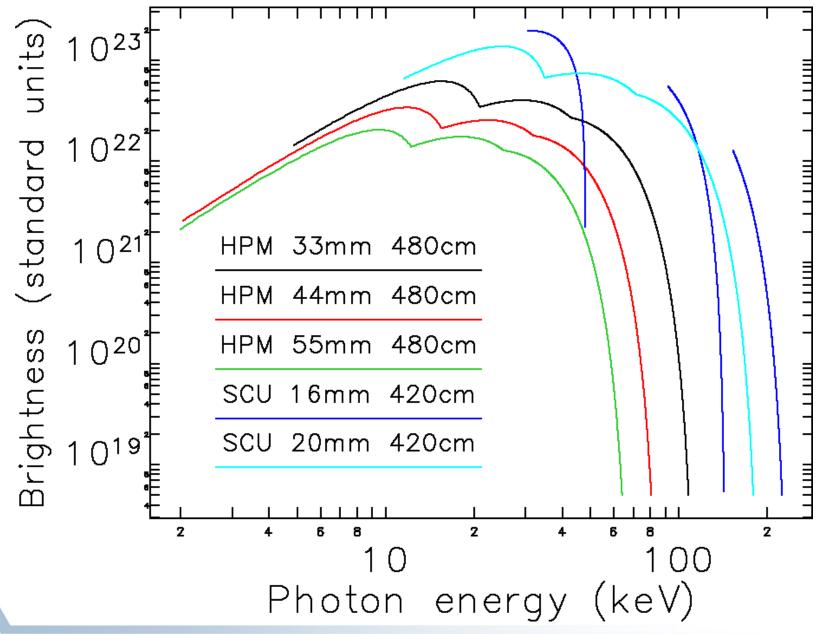
$$I_{mw} = \frac{\sqrt{2\pi}\alpha_c E\sigma_l \sigma_\delta^2}{R|Z/n|}$$


- Known to be conservative (factor of 5 for APS)
 - Add 5x fudge factor

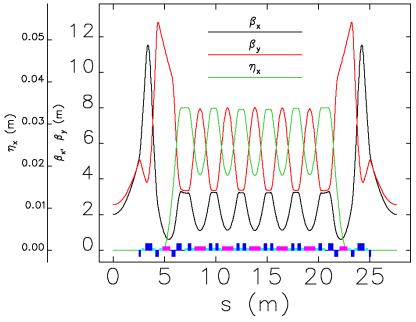
Trends in longitudinal parameters


- For 0.5 nC case, trends are promising
- E.g., for 9 GeV
 - Energy spread increases by 50%
 - Bunch lengthens nearly three-fold
- Suggests an advantage to *lower* energy

Surprising trends in MWI and Touschek


- MWI threshold is >0.9 nC throughout range
- Threshold generally *increases* with decreasing energy
 - Completely contrary to scaling results
 - Due to PWD and IBS, ignored before
- Touschek lifetime calculation assumes ±2% momentum acceptance
 - Touschek lifetime increases at lower energy!

Trend for Emittance


- For 0.5 nC, broad minimum centered on 9 GeV
 - <4 pm in both planes is very good</p>
- Appears that increased Touschek lifetime *does not* result from transversely colder beam at low energy
- We'll take 9 GeV as our working energy

Brightness

MBA Lattice for APS (Very Preliminary)

- Drop energy to 6 GeV
 - Reduces magnet strengths
 - Allows larger vacuum bore
 - Implications for ID choices
- Intensive 2-year R&D program just funded
 - Lattice and dynamics
 - Gradual installation
 - Collective effects
 - Magnet and vacuum design
 - Postdoc opportunity

Very similar to MAX IV design

	Present	MBA Lattice
Lattice type	DB	7BA
Electron energy	7 GeV	6 GeV
Current	100 mA	300 mA
Emittance	3.4 nm	147 pm

Conclusion and Questions

- Summarized exploratory work on a Tevatron-sized USR
 - So far, no show-stoppers found
 - Extremely high brightness promised from a 9 GeV ring
- Much work still needed
 - More detailed analysis of collective instabilities
 - Need impedance model consistent with small beam pipe
 - Given that IBS inflates emittance nearly 2-fold, should we relax the lattice to double ϵ_0 ?
 - Continue error studies and nonlinear dynamics optimization
 - Need to study approaches to and effects of running with $\kappa{=}1$
 - Are combined-function quad/sext magnets workable?
 - Beta functions at straights are too large (optimum is L/π). What's the trade-off between this and low emittance?
 - What's optimum beam energy for brightness-hungry science applications?
 - What's tolerable in terms of insertion devices (beam dynamics, emittance)?
 - Need injector design with <2nm emittance

Acknowledgements

 Thanks to the PEP-X team for providing their lattice and helpful comments and suggestions

- K. Bane, Y. Cai, R. Hettel, Y. Nosochkov, M.-H. Wang

 Thanks to A. Zholents for comments on earlier versions of this talk