Pulsed Sextupole Injection for MAX IV

FOJAB arkitekter SNØHETTA MAXLAB: Skiss 110609

MAX IV Injection Requirements

- Top-up injection into both MAX IV storage rings
 - -3.5 GeV linac with two extraction points
 - -two vertical (achromatic) transfer lines with two DC Lambertson septa each
 - -inject bunches with $\epsilon_n = 10 \text{ mm mrad}, \sigma_{\delta} = 0.1\%$

MAX IV Injection Requirements

- Ideally, injection should be transparent to users
 tough! (~200 nm vertical stability req. in 3 GeV ring)
- Original injection scheme: local 4-kicker bump
 but worried about complexity and stability

MAX IV Injection Requirements

- Ideally, injection should be transparent to users
 tough! (~200 nm vertical stability req. in 3 GeV ring)
- Original injection scheme: local 4-kicker bump
 - but worried about complexity and stability
 - matching, synchronizing and aligning 4 kickers/pulsers to properly close bump
 - strong sextupoles & octupoles within bump: bump can only be properly closed for one energy and amplitude
 - 4 kickers and septum require lots of space

Pulsed Multipole Injection

- Inspired by work at KEK on pulsed multipole injection with PQM & PSM
 PRST-AB 10, 123501 (2007) PRST-AB 13, 020705 (2010)
 - -align only one magnet to stored beam
 - -synchronize only one pulser to injection
 - -minute perturbation of stored beam by PSM

Design of PSM Injection Scheme

 $(b_3L) = \frac{\theta_{\rm psm}}{x_{\rm psm}^2}$

- KEK: studied analytically (under assumption of linear optics) → ideal phase advance so that
 - invariant of motion of injected bunch
 reduced to desired value

-PSM strength minimized

$$\frac{|x_{\rm psm}|}{\sqrt{\beta_{\rm psm}}} < A_x$$

PRST-AB 13, 020705 (2010)

Design of PSM Injection Scheme

- KEK: studied analytically (under assumption of linear optics) → ideal phase advance so that
 - invariant of motion of injected bunch
 reduced to desired value

 In MAX IV storage rings strong nonlinearities require deriving exact solution from tracking studies (Tracy-3 and DIMAD)

PRST-AB 13, 020705 (2010)

$$\frac{|x_{\rm psm}|}{\sqrt{\beta_{\rm psm}}} < A_x$$

Injection geometry & septum

Injection orbit

Simon C. Leemann

Injection & capture in phase space

- ~1.2 mrad to minimize reduced invariant
- ~0.8 mrad sufficient for capture within (design) acceptance

 Two-turn option → increase pulse duration and/or reduce required PSM strength

Injection & Capture Efficiency

Design injection ensures high efficiency

Injection & Capture Efficiency

Design includes significant margin for error

 If PSM properly aligned effect on stored beam is indeed negligible, but tolerances are tight

Alignment & residual field tolerances

3 GeV, H residual dipole field	<1µTm ←	Limit nerturbations to
3 GeV, V residual dipole field	< 5 µT m	stored beam
3 GeV, H misalignment	< 96 µm	
3 GeV, V misalignment	< 10 µm ←	
3 GeV, H angular acceptance at IP	± 0.1 mrad	Accurate V alignment
1.5 GeV, H residual dipole field	< 1.5 µT m	
1.5 GeV, V residual dipole field	< 15 µT m	
1.5 GeV, H misalignment	< 202 µm	rely on OFB & beam-based
1.5 GeV, V misalignment	< 10 µm	(re-)alignment (→ girder design!
1.5 GeV, H angular acceptance at IP	± 0.2 mrad	

	3 GeV PSM	1.5 GeV PSM
Pulse length, nominal	< 3.5 µs	< 640 ns
Pulse length, two-turn injection	< 7 µs	< 1.28 µs
Fall time	< 1.8 µs	< 320 ns
Amplitude jitter	±0.1%	
Long-time amplitude drift	< 1%	
Maximum repetition rate	10 Hz	

Single-turn injection

Limited energy acceptance at injection \rightarrow limited phase acceptance \rightarrow 3 linac bunches (3 GHz) can be injected into 1 storage ring bucket (100 MHz)

 \rightarrow Maximum train for injection: 10 × 3 × 100 pC at 10 Hz (3 GeV ring: Q_{tot} = 881 nC)

KEK designed PSM with 66 mm bore

~1.4 mrad at 15 mm

~0.2 T pole-tip field

3000 A peak current ~19 J stored energy

 \rightarrow ~34 kV for 1.2 µs pulse

PRST-AB 13, 020705 (2010)

 Short pulses @ MAX IV → need to reduce stored energy → reduce cross section

~1.2 mrad at 4.7 mm

- ~0.5 T pole-tip field
- 2171 A / 4342 A peak current ~21 J stored energy
- \rightarrow ~16 kV / 8 kV for 3.5 µs pulse

- Alternative: nonlinear kicker magnet design recently developed for BESSY II
 - Olaf Dressler's presentation

- Entered collaboration with SOLEIL
 - -adapting BESSY II design to MAX IV requirements
 - –comparing with "conventional" PSM design

P. Lebasque, SOLEIL

Outlook

 Confident we will find a technical solution for a pulsed multipole magnet in both MAX IV rings

-fall-backs: two-turn injection, reduced kick

Outlook

- Confident we will find a technical solution for a pulsed multipole magnet in both MAX IV rings

 –fall-backs: two-turn injection, reduced kick

