





# **Top-up injection**

Lenny Rivkin, PSI & EPFL, Switzerland (on behalf of M. Böge, C. Gough, A. Lüdeke, V. Schlott, A. Streun and other members of the SLS team)

#### Experience at Swiss Light Source

SLS has been operating with top-up since 2001

- Beam current maintained constant to about 0.5%
- Need a full energy injector
- Injected beam with small emittance; minimize losses
- Injection gating signals provided (very rarely used)



#### **SLS top-up operation**



- Sub-micron stability of the beam on the sample
  - higher order effects become visible!
- Performant feedbacks decoupling the beamlines

# Top-up injection is used at many sources Advantages:

- constant heat load on optical components (no refill interruptions): thermal equilibrium, but also
- constant heat load on the machine vacuum chamber
- increased stability of all systems
- diagnostics: small dynamic range

Threats

- radiation and safety issues
- injection disturbances
- injector availability
- injector running costs

## SLS: thermal equilibrium

#### BPMs move vs. magnet

- ≻ Top-up < 1 μm
- Decaying beam 5 - 10 μm

Reproducibility ≻ after beam loss < 1 µm

> time constant about 30 min



#### SLS Injection: transverse phase space



# Symmetric bump on 11m long straight No intervening multipoles

### Kicker waveforms can be made ~ identical



Top-up injection, L. Rivkin, PSI & EPFL;

USR Accelerator R&D Workshop, Huairou, Beijing

### SLS: closure of the injection kicker bump

Residual kick of injection bump

- The residual kick is about 50 μm in both planes
- Smeared out after 100 turns by Landau damping
- Beamlines see drop in intensity (beam vertical blow-up, from 10 μm to 40 μm within 1 ms)
- Vertical beam size is damped down in 2 3 damping times, 20 ms

#### SLS: top-up seen at a beamline



Photon flux at sample taken at a rate of 2 Hz (LUCIA)
Data taken with scanning energy → slope of data.
Top-up injection, L. Rivkin, PSI & EPFL; USR Accelerator R&D Workshop, Huairou, Beijing

#### SLS: radiation and safety issues

Injector has to be designed for top-up

- high injection efficiency is important
- keep the losses down
- total losses independent of top-up frequency (lifetime)

#### Stored beam is the best guarantee for top-up safety

### SLS: radiation and safety issues

Top-up permission from authorities without constraints

- No special top-up interlocks
- Open photon shutters allowed even during machine development
- No significant top-up related radiation has ever been measured

Vertical aperture limit is wiggler vacuum chamber

- Beamline with highest radiation level
- Wiggler was replaced with in-vacuum cryo-undulator
- Impedance optimized vertical scraper for injection straight installed

Protects in-vacuum undulators for gaps  $\leq 4 \text{ mm}$ 

Localize particle losses in best shielded area

#### SLS injector availability

Short outages of less then 2 min. can be ignored

 Recovery from Linac and Booster RF system arcs is often shorter

Average injector availability > 99 %



### Top-up is key to high stability & availability



#### Ultimate Storage Ring issues, questions

Top-up is a pre-requisite for sub-micron stability

Diagnostics: higher resolution over small dynamic range:

- BPM 1 mA  $\rightarrow$  400 mA  $\sim$  100  $\mu$ m absolute errors
- but 400 mA  $\rightarrow$  401 mA  $\sim$  100 nm absolute errors

Different injection schemes, including on-axis, long.?

Diffraction limited source:

- tolerance to injection disturbances: transverse, energy
- possibility of longitudinal injection?
- gating signals to the beamlines: they may be used!

# Thank you

