

Two-frequency RF system for long / short bunches for SPring-8 II

SPring-8 II
Higher Harmonic Cavity
Longitudinal Stability
Short Bunch Option

H. Ego, <u>T. Fujita</u>*, M. Masaki, A. Mochihashi, T. Nakamura (JASRI / SPring-8)

introduction

- Diffraction Limited Light Source @ 10 keV
 - 10 pm order emittance for SPring-8 II
- Emittance growth / lifetime decrease due to intra-beam scattering
- Harmonic cavity for
 - long bunch with small emittance

Oct.30 Session1: Lattice design for SPring-8 II Oct.30 Session4: High Gradient Magnet Design

Oct.31 Session4: Injection scheme for the SPring-8 upgrade

Nov.01 settion1 : Multi-Bunch Feedback System in USR

Parameter list of SPring-8 II (tentative)

	SPring-8	SPring-8 II
Beam energy (GeV)	8	6
Beam current (mA)	100	300
Momentum compaction	1.68E-4	1.55E-5
Circumference (m)	1436	1436
RF frequency (MHz)	508.58	508.58
Radiation loss (MeV/turn)	9	4
Harmonic number	2436	2436
Energy spread	0.1%	0.1%
Natural emittance (zero current limit)	3400 pm rad	67.5 pm rad
natural bunch length (zero current limit)	13 ps	5 ps

SPring.

Emittance growth / lifetime decrease due to intra-beam scattering

Zero current bunch length

1 mA / bunch : Even at 50 ps, ϵ 10 % grow.

0.1 mA / bunch: More than 20 ps, no growth.

Lifetime @ 0.1 mA / bunch 0.5 h at 20 ps 1 h at 40 ps

Bunch length:
At least 20ps
Gaol 40~50ps

Fundamental RF 3.5 harmonic RF sum

$$V = V_1 \cos(\omega \tau + \phi_s) + V_{3.5} \sin(3.5\omega \tau + \phi_{3.5})$$

bunch length (FWHM/2.35) [ps] scan

$$\tan \psi_{3.5} = -\frac{2Q_0}{1 + \beta_{3.5}} \frac{nf_{\text{rev}} - f_R}{f_R}$$

$$V_{3.5} = \frac{I_b R_{3.5}}{1 + \beta_{3.5}} F \cos \psi_{3.5}$$

1% voltage stability 0.3° phase stability

Need high precision phase/voltage control system.

- Coupler
- Tuner
- ator R&D for Ultimate Storage

6

Parameters of the harmonic cavity

f (MHz)	1780.03
harmonic	3.5
mode	TM010
Number of cavity	3 (single cell)
coupling	500-5000
Cavity voltage	1.2 MV
Reflection power (total)	250kW @300mA
Coupler	coax. double-feed
Coupler power	42 kW/each
Operating temperature	2 K
RF generator	10 kW/cavity
Eacc	21 MV/m

- Low R/Q for beam loading
- Superconducting cavity
- Cavity voltage / phase control
 - Coupler / tuner

3.5 harmonic of 500/352MHz is 1750/1232MHz

No SC cavity

SPring 8

Longitudinal Stability(1)

- Transient beam loading accompanied by
 - bunch gap
 - ELETTRA, PRST-AB 9, 044401 (2006)
 - NSLS-II, EPAC08, p. 904

Issue to be solved.

- Bunch gap is necessary
 for hybrid filling or to avoid ion trapping / fast ion instability.
- Then, lead RF voltage variation in one-turn.
- And results in bunch length variation in one-turn.

Under study SP8 II case...

Longitudinal Stability(2)

- Robinson instability with Harmonic Cavity has been studied.
 - PRST-AB, Bosch, 4, 074401(2001)

How about 3.5 harmonic case?

Tracking simulation

w. fundamental / harmonic cavity impedance w.o. broad-band impedance

Bunch center of mass and bunch length oscillate above 2.7MV.

Not exponential growth.

Synchrotron oscillation feedback

Synchrotron frequency fluctuate
 depending on the harmonic voltage and phase.

Detect and feedback $\Delta p/p$ directly

Bunch center of mass and bunch length oscillation was successfully suppressed by weak feedback gain.

Short bunch option

- As an option of SPring-8 II, short bunch scheme is under study.
- At SPring-8 site, SACLA(XFEL) provides a few 10 fs X-ray, SPring-8 II: 20 ps~50 ps and 4ps.
 - X-ray of sub ps range is a gap.

- Concept: Provide sub-ps X-ray to all Beamlines
- How to achieve sub-ps bunch?

CSR effect

Equilibrium Bunch Length (r.m.s.) 6GeV 6-bend lattice@α_c=1.75e-5

10 3.5 harmonic X-band Influence of CSR effect becomes σ_t (ps) w/CSR 1.4 GHz $I_b=0.1 \text{ mA} / \text{bunch}$ significant at sub-ps - 1ps bunch length. mm-wave 75~120 GHz 0.1 10 σ_{t} (ps) wo/CSR

 mm-Wave is required to achieve the equilibrium bunch length less than 1 ps.

Sub-ps Short Bunch Generation by mm-Wave Inverse FEL

&D for Ultimate Storage Rings (Beijing, October 31, 2012)

summary

- Two-frequency RF system (main RF+3.5 harmonic) is planned for SPring-8 II.
 - Ultra-low emittance for long bunch(~40ps)
 - Short bunch (~4ps w/ CSR w/o wake)
- Bunch gap effect on bunch length is under study.
- Possibility of longitudinal instability (tracking)
- Direct feedback of dp/p with small gain would suppress the instability.
- Sub-ps bunch option by a mm-wave iFEL scheme is under study.

Synhrotron tune spread

