

Study of Lower Emittance Lattice at SOLEIL

Amor Nadji and Ryutaro Nagaoka

On behalf of the Sources and Accelerators Division

Synchrotron SOLEIL

1

27 Beamlines have seen the Beam

19 from IDs, 6 from BM + 2 IR

04/09/12				ID		BM
44.20.40	432.02	mA	102_C	PSICHE	PLEIADES	ODE
11:39:40			DESIRS	106_M	CRISTAL	SMIS
Function Mode	TOP-U	P	DEIMOS	GALAXIES	TEMPO	AILES
Filling Mode	Hybrid	e	109_L	HERMES	PX1	DISCO
			PX2	SWING	ANTARES	METRO
Lifetime	11.51	n	NANO_SCO	SEXTANTS	SIXS	SAMBA
Integrated Dose	7852.0 A	.h	CASSIOPEE	SIRIUS	LUCIA	DIFFABS
Average Pressure	Orbit (RMS) 0	brbit (Peak) Emit	ttance	Tune
6.7e-10 mbar	H 51.0 μm		306.4 µm	4.30	nm.rad	0.1742
End Of Beam	V 63.9 μm		380.0 µm	43.0	pm.rad	0.2321
Sep-10 07:00:00	Delivery Since	,				
139:20:21	Mon Sep 3 09:54:3	8		Shift Lig	jnes	
400						
300						
200						
100						
0						
14:00 1	7:00 20:00	23:00	02:00	05:00	08:00	11:00
Mon Sep 3 18:39:10		Faiso	eau dis:	ponible		

5 Modes of Operation for the USERS

All in Top-up injection

Mode of operation	User Operation	Ultimate performance achieved
Multibunch	430 mA	500 mA
Hybrid	425 mA + 5 mA	425 mA + 10 mA
8 bunch	100 mA	100 mA
1 bunch	12 mA	20 mA
Low α : bunch length and current	4.7 ps RMS and 65 μA per bunch	2.5* ps RMS and 10 μA per bunch

* Not yet measured

Photon beams availability in user operation.

Storage Ring Main Parameters

Energy (GeV)	2.75
Emittance H (nm.rad)	3.7 (up to 4.5 with all IDs closed)
Circumference (m)	354.097
Coupling, $\mathcal{E}_{V}/\mathcal{E}_{H}$ (%)	Minimum achieved ≈ 0.1 Operation (controlled) ≈ 1
Energy Spread	1.016 x 10 ⁻³
Betatron Tunes H / V	18.1742 / 10.2321
Chromaticities H / V	1.4 / 2.6
Beam Lifetime (h) @ 430 mA (multibunch)	15h – 20h depending on the IDs configuration

SOLEIL Lattice

ε_{x0} = **3.7 nm.rad** @ **2.75 GeV**

24 straight sections 4 x 12 m 12 x 7 m 8 x 3.6 m

Different β -functions

Finite dispersion in all straight sections

SOLEIL Lattice Modified

✓ A few possibilities of reaching lower **horizontal emittance** in the Storage Ring are currently investigated at SOLEIL.

Short term path :

- > Robinson Wiggler in a non-zero horizontal dispersion straight section.
- > Genetic Algorithms to reach unexplored solutions.
- > Beam Adapter in the 12 m long straight section.

Long term path :

Ultimate Storage Ring in the same tunnel with a goal of reducing the horizontal emittance by a factor of 10.

Robinson Wiggler

SYNCHROTRON • Horizontal (natural) emittance: $\mathcal{E}_{x0} = \frac{C_q \gamma^2 \langle H \rangle_{dipole}}{J_x \rho_x}$

✤ J_x is related to the damping partition D by : J_x = 1 − D

$$D = \frac{\oint \frac{\eta_x}{\rho_x^3} ds + \frac{2}{B^2 \rho_x^2} \oint \eta_x B \frac{dB}{dx} ds}{\oint \frac{ds}{\rho_x^2}} \quad \text{If} \quad D = -1 \quad \Longrightarrow \quad J_x = 2$$

The horizontal emittance can be divided by a factor 2

Such as:
$$J_x + J_z + J_s = 4$$
 where $J_z = 1$ and $J_s = 1$

A magnetic element introducing the product B^*dB/dx in a straight section where the dispersion η_x is **non zero** contributes to the modification of **D**.

If this magnetic element is such as the field (*B*) and the gradient (dB/dx) are of opposite sign, this contribution is *negative* and consequently we can try to find the conditions to make **D** =-1!

Robinson Wiggler

A gradient wiggler magnet, as proposed by Robinson*, consists of even number of consecutive blocks with field and gradient of opposite signs.

Used on the PS at CERN (in 1983) to counteract the natural horizontal antidamping $\rightarrow J_x = 3$ and D = -2.

*: K.W. Robinson, Phys. Rev. 3 (1958) 373.

Robinson Wiggler Application to SOLEIL: (work in progress by a PhD student)

↔ In short straight sections of the SOLEIL Storage Ring : $\eta_x = 28$ cm.

$$D \approx 5.6 \times 10^{-3} \left\langle B_w \frac{dB_{w,z}}{dx} \right\rangle L_w$$
 Where $\left\langle B_w \frac{dB_{w,z}}{dx} \right\rangle L_w \approx 193 T^2$ and $L_w \approx 2 m$

(see H. Abualrob et al., IPAC'12)

30/10/2012

Workshop on Accelerator R&D for USR (Beijing, China, Oct. 30 – Nov. 1, 2012)

. . . .

Robinson Wiggler

Drawback and Issues

• Energy dispersion is increased by a factor $\sqrt{2}$

$$\left(\frac{\sigma_E}{E_0}\right)^2 = \frac{2}{2+D} \left(\frac{\sigma_{E,0}}{E_0}\right)^2$$

- Damping in longitudinal plane with $J_s = 1$ (larger damping time constant)
- How to reach such very high gradient?
- Homogeneity of the magnetic field in the electron beam region: effect on injection and beam lifetime
- What are the radiation properties?

Possibility of Applying the Emittance Adapter to a Long Straight Section

- ❑ Application of the round ⇔ flat beam conversion studied by Y. Derbenev et al. in light source rings was proposed by A. Chao and P. Raimondi (cf. FLS 2012).
- The scheme consists in a local exchange of the apparent horizontal and vertical emittances using skew quadrupoles and a solenoid;

$$(\mathcal{E}_{x})_{apparent} \sim \sqrt{(\mathcal{E}_{x} \cdot \mathcal{E}_{z})_{ring}}$$

□ As in the SOLEIL storage ring, a 12 m long straight section is still free, application of the scheme is of great interest in lowering the horizontal emittance locally.

One of the four 12 m long free straight sections in the dispersion-free optics

- □ The emittance adapter seems to work without imposing particular difficulties on the adapter magnets for SOLEIL, as claimed by A. Chao and P. Raimondi, and thus the scheme appears attractive for SOLEIL.
- Optics matching efforts should be continued to maximize the distance available for the solenoid
- Technical challenges for the construction of a compatible insertion device and associated beam dynamics issues must be pursued.

Long term path : an USR in the same tunnel ?

The approach taken is to employ whatever methods available to lower the emittance, under the constraint of leaving the circumference of the ring as well as the straight sections unchanged.

As <u>a first of such study</u>, the use of longitudinal field variation of superbends is attempted, since at SOLEIL there are growing interests in the dipole beamlines for such dipoles as means to raise the photon energy.

Description of a superbend (SB) with the hard-edged model:

Asymmetric and symmetric field profiles

(see R. Nagaoka et al. IPAC 2012)

Theoretical Minimum Emittance (TME) for a given dipole profile:

$$(\varepsilon_x)_{\min} = C_q \frac{\gamma^2}{J_x} \frac{2\sqrt{S_{01}(S_{03} - (S_5^2/I_3))}}{\oint \rho^{-2} \,\mathrm{d}s}$$

TME for an asymmetric dipole with the achromat condition $(\Theta = 11.25^{\circ}, B_{SB} = 7.2 \text{ T})$ S_{01} , S_{03} , S_5 and I_3 are specific integrals of dispersion and $\rho(s)$ functions over the dipole

(cf. R. Nagaoka and A. Wrulich, NIM A575 (2007) 292)

TME for a symmetric dipole without the achromat condition ($\Theta = 8^\circ$, $B_{SB} = 7.2$ T)

Strategy adopted in the lattice search:

 $\eta_x = 0$ in the long (SDL) and medium (SDM) straight sections, due to the inevitable energy spread increase \Rightarrow Use of dispersion suppressing dipoles

Results obtained using 7 T superbends:

Lattice and optics for the SDL-SDM (left) and SDM-SDC-SDM cells (right), altogether representing 1/8th of the ring

	Cell SDL-SDM	Cell SDM-SDC-SDM
Horizontal emittance [nm·rad]	0.98 [3.85]	0.97 [2.67]
Energy spread	1.94×10 ⁻³ [1.02×10 ⁻³]	1.94×10 ⁻³ [1.02×10 ⁻³]
Momentum compaction	0.983×10 ⁻⁴ [4.836×10 ⁻⁴]	0.941×10 ⁻⁴ [4.154×10 ⁻⁴]
Betatron tunes	(2.805, 1.368) [1.110, 0.477]	(2.811, 1.717) [1.165, 0.811]
Natural chromaticities	(-29.36, -9.63) [-3.22, -1.15]	(-29.68, -12.25) [-3.34, -1.69]

				High field			Low field	
	Θ [deg]	<i>L</i> [m]	<i>B_{SB}</i> [T]	$ ho_{\rm BS}[{\rm m}]$	<i>L_{BS}</i> [m]	$B_{Low}[T]$	$\rho_{\rm Low}{\rm [m]}$	L_{Low} [m]
Superbend	8	0.8	7.2	1.273	0.1	0.8	11.460	0.7
Dispersion suppressor	3.25	0.304	1.71	5.36	0.304			

Summary of the bending magnets used (the field gradients employed are not shown)

	Long straight	Medium straight	Short straight	hort straight
SOLEIL original optics	5.34	5.55	5.58	5.58
SB-QBA	0.98	0.98	2.48	2.48
Ratio	5.5	5.7	2.3	2.3

Effective emittance $[\varepsilon_x(s)]_{eff}$ [nm·rad] in comparison with the original SOLEIL optics

Summary:

- With a QBA (Quadruple Bend Achromat) lattice consisting of 2 superbends and 2 dispersion suppressors, a solution reaching a sub-nanometer emittance was found for the SOLEIL ring. The study should therefore be continued in this direction, in addition to other schemes such as a MBA (Multiple Bend Achromat) lattice.
- The obtained solution clearly exhibits non-trivial issues (linear and nonlinear dynamics, beam injection, magnet technology, beam lifetime, instability, ...), which must be pursued in parallel.