EXPERIENCE WITH DAMPING WIGGLERS AT PETRA III.

Alexander Kling

MPE - DESY

USR Workshop, Huairou, Beijing November, 2012

OVERVIEW.

FIGURE: Schematic overview of PETRA III showing the distribution of the main components in the straight sections.

Parameter	Value	Unit
Energy	6.0	GeV
Circumference	2303.952	m
Q_X, Q_Y	36.12, 30.28	-
Nat. Chromaticity	-42.7/-42.3	-
Energy Spread	1.3×10^{-3}	-
Number of Damping Wigglers	20	-
Number of Undulators	14	-
Hor. Emittance (w/wo. Wiggler)	1.0/4.65	nm rad
Coupling	0.01	

TABLE: Some Parameters of Petra III.

FIGURE: Beta functions in Petra III. The optics includes all damping wigglers (no undulators).

OVERVIEW.

FIGURE: Schematic overview of PETRA III showing the distribution of the main components in the straight sections.

Parameter	Value	Unit
Energy	6.0	GeV
Circumference	2303.952	m
Q_X, Q_Y	36.12, 30.28	-
Nat. Chromaticity	-42.7/-42.3	-
Energy Spread	1.3×10^{-3}	-
Number of Damping Wigglers	20	-
Number of Undulators	14	-
Hor. Emittance (w/wo. Wiggler)	1.0/4.65	nm rad
Coupling	0.01	

TABLE: Some Parameters of Petra III.

FIGURE: Horizontal dispersion in Petra III.

WIGGLER SECTIONS.

- Regular FODO structure
- 10 wigglers per long straight section
- Total length: 80m
- Total radiated power: 880 kW @ 200mA

WIGGLER MAGNETIC DESIGN.

- Peak Field: 1.58 T
- Period Length: 20 cm

FIELD QUALITY.

FIGURE: Magic fingers for wiggler tuning.

FIGURE: Correction of vertical and horizontal field integral.

Some Remarks about the Specs:

- $\varepsilon_x = 4.65 \rightarrow \varepsilon_x = 1.0$
 - $\int B^2 dl \approx 100 \,\mathrm{T}^2\mathrm{m}$
 - $\lambda = 0.2$ m, $B_0 = 1.58$ T and $l_{tot} = 80$ m
- Aperture Requirements:
 - 3 mm mrad @ 25 m $\beta_{max} \Rightarrow$ 17mm vertical aperture
 - add absorbers, chamber and tolerance ⇒
 24mm magnetic gap
 - \bullet \pm 30 mm horizontal aperture
- Field Quality:
 - 10⁻³ @ 10mm
 - Variation of the vertical integrated field
 420 Gcm for ±20mm
 - Variation of the horizontal integrated field < 285 Gcm for ± 20 mm
 - Upper limits for multipole coefficients (normal and skew) specified

FIELD QUALITY.

FIGURE: Magic fingers for wiggler tuning.

FIGURE: Correction of vertical and horizontal field integral.

Magnetic tuning with magic fingers:

- vertical correction with 10 magnets: 6x6 mm², minimal gap 24mm
- horizontal correction with 12 magnets: 7x18mm², minimal gap 65mm
- first integrals tuned down to:
 ±30 Gcm vertical
 ±50 Gcm horizontal

FIELD QUALITY.

FIGURE: Magic fingers for wiggler tuning.

FIGURE: Correction of vertical and horizontal field integral.

FIGURE: Streched wire measurements of first field integrals. Red lines mark the limits put on the good field region.

VACUUM SYSTEM AND ABSORBER DESIGN.

FIGURE: Schematic layout of the vaccum system.

- aluminium wiggler vacuum chambers
- NEG coated
- water cooled

FIGURE: Wiggler vacuum chamber.

VACUUM SYSTEM AND ABSORBER DESIGN.

FIGURE: Schematic layout of the vaccum system.

FIGURE: Regular absorber.

VACUUM SYSTEM AND ABSORBER DESIGN.

INFLUENCE ON OPTICS.

- Regular FODO structure in long straight sections
- Main influence on linear optics from additional vertical focusing
- Optics model from tracking implemented as matrix im MadX
- Vertically focusing quads single powered to compensate wigglers

3 (m), B (m)

FIGURE: Measured beta and phase beating with 3+3 wigglers installed compared to the optics for the bare machine.

- Gradually installed wigglers during commissioning.
- ORM measurements used to verify optics.

INFLUENCE ON OPTICS.

- Marginal effect on horizontal optics
- Horizontally focusing quads powered in series

FIGURE: Measured beta and phase beating with 3+3 wigglers installed compared to the optics including wiggler matrix descriptions.

Matrix description works well!

DISPERSION CONTROL.

- Constraints on residual dispersion in wiggler sections: $D_x < 18 \text{ mm}$, $D_y < 5 \text{ mm}$
- Careful combined orbit and dispersion correction necessary (ORM,DRM,SVD).
- Control of vertical dispersion using skew quads.

FIGURE: Measured dispersion after orbit correction to BBA values.

DISPERSION CONTROL.

Standard Santani Alliani da Amerikani da Bada da Santani da Manada da Santani da Santani da Santani da Santani

- Constraints on residual dispersion in wiggler sections: $D_x < 18$ mm,
 - $D_y < 5 \text{ mm}$
- Careful combined orbit and dispersion correction necessary (ORM,DRM,SVD).
- Control of vertical dispersion using skew quads.

FIGURE: Measured dispersion after combined orbit and dispersion correction.

DISPERSION CONTROL.

- Constraints on residual dispersion in wiggler sections: $D_x < 18 \text{ mm}$, $D_y < 5 \text{ mm}$
- Careful combined orbit and dispersion correction necessary (ORM,DRM,SVD).
- Control of vertical dispersion using skew quads.

FIGURE: Measured dispersion in the wiggler sections after combined orbit and dispersion correction.

MEASURED EMITTANCE.

MACHINE WITHOUT DAMPING WIGGLERS

Measured horizontal width:

 $\sigma_x = 86 \ \mu m$

Calculated emittance:

 $\varepsilon_x = 4.54 \text{ nm rad}$

MEASURED EMITTANCE.

- Vertical emittance: $\varepsilon_v \sim 10 \text{ pm rad}$
- Clear decrease in lifetime after dispersion tuning.
- Touschek lifetime 1.6h @ 2.0 mA

DAMPING WIGGLERS INSTALLED

Measured horizontal width:

 $\sigma_x = 44 \ \mu m$, Calculated emittance:

 $\varepsilon_x = 1.03 \text{ nm rad}$

- Injected beam size: 350 nm rad, 10% coupling.
- Required acceptance for injection:
 ~ 18 mm mrad (aiming at 30)
- Vertical: ~ 1 mm mrad
- Detuning with amplitude: dominant cross term $\partial Q_y/\partial J_x$
- MadX (pure sextupole): \sim -2400, SixTrack with wigglers: \sim -2100
- Momentum acceptance > 1.5% as required for Touschek lifetime.

- Multiturn measurements with all Bpms (with R. Bartolini).
- Good agreement with tracking results.
- Also confirms good control of linear optics.

- Some more lines appear in the vertical spectrum.
- Machine model has still to be improved.
- Careful compensation of bpm nonlinearities required.

- Some more lines appear in the vertical spectrum.
- Machine model has still to be improved.
- Careful compensation of bpm nonlinearities required.

FIGURE: Nonlinear resonance line $Q_y \pm Q_x$ determined by the sextupoles.

TUNE SHIFT WITH INTENSITY.

• Without damping Wigglers: $\Delta Q_x/\Delta I = -0.0021$

- Without damping wigglers: $\Delta Q_{\rm v}/\Delta I = -0.0136$
- Both values larger than with damping wigglers installed!

TUNE SHIFT WITH INTENSITY.

- Transverse kick parameter k_⊥ (V/pC/m)
- Budget 4800 for 2.5 mA
- Impedance model: 750 (horizontal)
- $\sigma_z = 12$ mm, RF-Voltage: ~ 15 MV

- Budget 4800 for 2.5 mA
- Impedance model: 2610 (vertical)
- 33% larger than model, still within budget.
- More than 2.5mA have been stored in single bunch!

TEMPERATURE MEASUREMENTS AT ABSORBERS.

FIGURE: First measurements of power load on absorbers with 6+6 wigglers installed. Good agreement with theory (Mind however Abs. 7!). Measurements with all wigglers not yet evaluated.

- Cisco switches died
- Radiation damage can be seen on magnet coils, paintings, cables, etc.
- PETRA Hall West temporarily declared radiation controlled area

- Measured radiation during 3 weeks standard user operation:
- 20-30 kSv @ integrated current of 43 Ah
- Highest value Absorber WR 28m: 50 kSv
- Radiation shielding delicate because of temperature at absobers!
- Consequences for lifetime of wiggler magnets?

FIGURE: Integrated Dose Rate measured in wiggler sections.

- Measured radiation during 3 weeks standard user operation:
 20-30 kSv @ integrated current of 43 Ah
- Highest value Absorber WR 28m: 50 kSv
- Radiation shielding delicate because of temperature at absobers!
- Consequences for lifetime of wiggler magnets?

FIGURE: Variation of corrector strengths from 2010 to 2012.

- Measured radiation during 3 weeks standard user operation:
 20-30 kSv @ integrated current of 43 Ah
- Highest value Absorber WR 28m: 50 kSv
- Radiation shielding delicate because of temperture at absobers!
- Consequences for lifetime of wiggler magnets?

CONCLUSIONS.

- Petra III strongly relies on damping wiggler performance
- Linear optics well understood
- Dispersion control (long term) essential
- Wiggler nonlinearities not a problem
- Radiation issues to be considered

CONCLUSIONS.

- Petra III strongly relies on damping wiggler performance
- Linear optics well understood
- Dispersion control (long term) essential
- Wiggler nonlinearities not a problem
- Radiation issues to be considered

Thank you!

