

KTH Teknikvetenskap

Gamma-ray activities at KTH

Mark Pearce + Felix Ryde 2012-10-17

The First International Workshop on High Energy cosmic Radiation Detection Center for Particle Astrophysics, Beijing, October 17-18 2012

Astroparticle physics

KTH Teknikvetenskap

CAPRICE (1990's) Cosmic antiparticles Gas-RICH

PoGOLite (now)

Polarised X-rays from point sources Scintillator Compton polarimeter

Cosmic antiparticles Anticoincidence shield

Fermi (2008 -) Cosmic gamma-rays + GRBs CsI(TI) calorimeter

PFD / ISS (2009, 2011) Education

Overview

- A secondary HERD science goal: Gammaray bursts
 - PoGOLite a Compton polarimeter for point sources
- Possible contributions to HERD

Gamma-ray bursts with Fermi Large area telescope (LAT)

- Pair-conversion telescope
- 30 MeV >300 GeV
- Consists of a precision tracker, calorimeter & anti-coincidence detector
- Scintillation crystals in calorimeter provided by

KTH Engineering Sciences

electron-positron pair

Unprecedented coverage for GRBs at high energies

Gamma-ray burst monitor (GBM)

- 12 Nal(TI) detectors
- 2 BGO detectors
- 8 keV 40 MeV (combined)
- Triggers on GRBs
- Localizes GRBs

Covers peak of GRB emission

~1/30 of GBM bursts seen by LAT

Example GRBI10721A Axelsson et al. (Fermi collab.)2012

What emission process can produce the observed 'Band spectrum'?

- Synchrotron emission?

 E_p = 15 MeV puts constraints on the emission radius
 Spectrum requires slow cooling electrons → cooling break above 15 MeV
 → R < 3 · 10⁹ (Γ/1000)³ (γ_e/1836)³ ([1+z]/3)⁻² cm
- Photospheric emission?
 - E_p = 15 MeV implies extremely high temperature at the photosphere
 - IC scattering on hot electrons close to photosphere?

A highly debated issue (see Beloborodov 2012, Zhang et al. 2012, Veres et al. 2012)

Two spectral components statistically required (>5 σ)

Gamma-ray burst polarimeter GAP

(Yonetoku et al. 2006) on board the IKAROS solar power sail (Kawaguchi et al. 2008)

Effective Area	geometry polarization	$\frac{176 \ {\rm cm}^2}{34 \ {\rm cm}^2 \ @ 100 \ {\rm keV}}$
Energy Range	lightcurve spectrum polarization	10–300 keV 10–300 keV 50–300 keV
Time Resolution	lightcurve spectrum polarization	125 msec 1 sec
Field of View	effective	$\pi \; { m str}$

g. 1.2. A schematic view of GAP (left) and a whole integrated system (right).

GAP observations of GRBI10721A

Change in polarisation angle over time?

Synchrotron emission from globally ordered magnetic fields? Polarisation from the photosphere? Monitoring of GRBs is a highly interesting science goal

An energy range extending down to ~MeV energies is useful

Polarisation signal in the emission is a strong diagnostic for the emission mechanism and emission site

- Polarisation is a powerful diagnostic for source emission mechanisms. However, essentially no measurements in the X-/gammaray band.
- **PoGOLite** is optimised for **point sources** (e.g. Crab pulsar, Cygnus X-I).
- Measures **10% polarisation** in **200 mCrab sources** in a **6 hour** balloon observation.
- **Maiden flight** of scaled down (less effective area) **'pathfinder'** took place in **July 2011** from Esrange Space Centre, Sweden. Early termination due to balloon failure.
- Retry summer 2012. No launch attempt due to poor weather.
- Will try again summer 2013...

SLAC - KIPAC

Uni. of Hawaii

PoGOLite principle

• γ from a **polarised** source undergo **Compton scattering** in segmented detector material

• Higher probability of being scattered perpendicular to the electric field vector

 Observed azimuthal scattering angles are modulated by polarisation

• Incident γ deposits little energy at Compton site

• Most deposited at photoelectric absorption site

• Energy difference can be distinguished by simple plastic scintillators (despite intrinsic poor energy resolution)

Implementation

Scintillator array

Phoswich Detector Cells (~30 kg)

NIIC, Novosibirsk

Side anticoincidence, BGO ~150 kg

Pathfinder instrument (61 units)

PoGOLite beam test

I 9 phoswich I 9 detector cells an

I segment of the side anticoincidence shield

19 units

Neutron background

- Neutron background is found to dominate (Geant4 simulations)
- Neutrons are absorbed and thermalised by a thick polyethylene shield
- Neutrons monitored during flight by a novel LiCaAlF6 ('LiCAF') detector in a Phoswich arrangement with BGO
- n+⁶Li (low Z!)→T+α (MeV line), 9000 γ/n, τ~I.5μs (BGO ~0.3μs)

Polarimeter + attitude control

DST CONTROL

- Goal: a circumpolar flight.
 - Pioneering! ~15 days aloft.
- Alternative: 5 day flight to Victoria Island, Canada.
- Multiple observations of Crab, Cygnus XI and backgrounds.

Possible contributions to HERD?

- HERD design well matches our experience with scintillator-based detectors.
- Design qualification balloon flight from Esrange Space Centre (a la Fermi/GLAST BFEM)?
- Adding dedicated small lightweight GRB monitors... ideally with polarization capability ... would be very interesting.
- HERD science goals are well aligned to Oskar Klein Centre in Stockholm (e.g. dark matter search).

