PROPOSAL FOR AN HOMOGENEOUS, ISOTROPIC CALORIMETER FOR SPACE EXPERIMENTS

Oscar Adriani INFN and University of Florence On behalf of the Florence Cosmic Rays group

Beijing, October 17th, 2012

The First International Workshop on the High Energy cosmic-Radiation Detection

Background

- We are developing this calorimeter for the Gamma-400 project, planned to be installed on a Russian satellite
- I would like to present you this idea, to look for possible sinergies with HERD project

Which are the most important aspects of a calorimeter for high energy cosmic rays – space based experiment?

Physics goal:

- High energy (~ TeV) electron to search for structures in the spectrum and to study close-by sources
- High energy (>10¹⁴ eV) proton and nuclei to study the knee region

Requirements

- 1. Very large geometrical factor (few m² sr)
- Good electron and hadron energy resolution (~1-2% for e, ~30% for hadrons)
- 3. Excellent electron/hadron separation (>10⁵ rejection factor)
- 4. Reduced weight and power consumption (depend on the launch vehicle)

Our proposal: a cubic, homogeneous, isotropic calorimeter (I)

- We propose a large cubic homogeneous calorimeter, made with many small cubes. The detector would thus be able to contain and measure showering particles impacting on all sides.
- 1. The Geometrical factor is multiplied by 5 wrt the traditional 'top style' geometry!!!!
 - This idea is especially suited to a calorimeter which is the heaviest subdetector in the complete experiment.
 - 'Ancillary' detectors are necessarily placed around the calorimeter, but these are extremely lightweight compared to the calorimeter itself ! (e.g. a charge measuring and trigger system).
 - The small separation gaps in between the calorimeter cubes increase the size and hence the geometrical factor without increasing the weight, at the price of a small degradation in energy resolution.
 - The bottom side can be used for mechanical support.

Our proposal: a cubic, homogeneous, isotropic calorimeter (II)

- 3. Good electron and hadron energy resolution can be accomplished because of:
 - Homogeneous detector (scintillating crystals)
 - Very deep calorimeter for full e.m. shower containment up to very high energies

4. Excellent electron/hadron separation reached thanks to:

- Very fine granularity in every direction
- Small cube size ~ Moliere radius
- 5. Adjustable weight and power consumption:
 - They can be easily adjusted to the launch vehicle limit simply rescaling the size (always keeping in mind the necessary depth for full shower containment!!!

Additional details....

- Exercise made on the assumption that the detector's only weight is ~ 1600 kg (Gamma-400 driven idea)
 - Mechanical support is not included in the weight estimation
- The optimal material is CsI(Tl)

Density:	4.51 g/cm^3
X _o :	1.85 cm
Moliere radius:	3.5 cm
λ_{I} :	37 cm
Light yield:	54.000 ph/MeV
$ au_{ m decay}$:	1.3 µs
λ_{\max} :	560 nm

 Simulation and prototype beam tests used to characterize the detector

The proposed configuration: CsI(Tl) ~ 1680 kg

	Cubes
N×N×N	20×20×20
L of small cube (cm)	3.6*
Crystal volume (cm ³)	46.7
Gap (cm)	0.3
Mass (Kg)	1683
N.Crystals	8000
Size (cm ³)	78.0×78.0×78.0
Depth (R.L.) " (I.L.)	39×39×39 1.8×1.8×1.8
Planar GF (m²sr) **	1.91

(* one Moliere radius) (** GF for only one face)

O. Adriani

The readout sensors

- Minimum 2 Photo Diodes are necessary to cover the whole huge dynamic range
- 1 MIP \rightarrow 10⁷ MIPS, since E_{max} in one crystal ~ 0.1 E_{tot}
- Large Area Excelitas VTH2090 9.2 x 9.2 mm² for small signals → Inserted in the simulation!
- Small area 0.5 x 0.5 mm² for large signals
- Two independent readout channels will be used
- Details later on!

Simulation

- FLUKA based simulation
- Planar generation surface on one of the 5 faces
- Results valid also for the other faces!
- Carbon fiber in between crystals (3 mm gaps)
- Large photodiode is inserted on the crystal in the simulation
 - We take into account also the energy release in the Photodiode itself!
 - Results are valid for every face since scintillation light is isotropically emitted
- Electrons: 100 GeV 1 TeV range
- Protons: 100 GeV 100 TeV range
- ~ 100 10.000 events for each energy
- No mis-calibration effects are included in the simulation
- Light collection efficiency and PD quantum efficiency are included in the simulation
- For the moment we have very low statistics for high energy particles (huge computing time is necessary....)

Electrons

Very simple geometrical cuts:

- The track should point to a fiducial surface (two crystals on the side are eliminated)
- The maximum of the shower should be well contained in the fiducial volume
- The length of the shower should be at least 40 cm (~21 $\rm X_{o})$

Efficiency of these cuts~ 36% Effective geometrical factor ~ $(0.78*0.78*\pi)*5*\epsilon$ m² sr= $9.55*\epsilon$ m² sr

Gf_{eff}~3.4 m²sr (including the efficiency)

Electron #1

Longitudinal profile

O. Adriani

Bejing, October 17th, 2012

Bejing, October 17th, 2012

Protons

Very simple geometrical cuts:A good reconstruction of the shower axis

- At least 50 crystals with >25 MIP signal
- Energy is reconstructed by using the shower length measured in the calorimeter, since leakage are important (1.8 λ_I for perpendicular incidence)

Proton #1

Longitudinal profile

Shower starting point is identified with ~1 cm resolution

Proton energy resolution

Proposal for an homogeneous isotropic calorimeter for space experiments

Efficiencies and Geometrical factors

 $GF(1 \text{ face}) = 0.78*0.78*\pi \text{ m}^2 \text{ sr} = 1.91 \text{ m}^2 \text{ sr}$ $GF(5 \text{ faces}) = 1.91*5 \text{ m}^2 \text{ sr} = 9.55 \text{ m}^2 \text{ sr}$

Energy	3	Energy resolution	Gfeff (m²sr)
100-1000 GeV	35%	32%	3.3
1 TeV	41%	34%	3.9
10 TeV	47%	38%	4.5

Selection cuts can be tuned to optimize the parameters Roughly speaking: GF>3 m²sr with good energy resolution!!!!

What we can reach with this calorimeter?

Assumptions:

- 10 years exposure
- No direct closeby sources for electrons
- Polygonato model for protons/nuclei

	Electrons												
	Gf _{eff} (m	² sr)	$\Delta E/E$ Depth (X		_o) e/p fac	rej. H ctor	E>0.5 TeV E>17		1 TeV E>2 Te		V E>4 TeV		
	3.4 2%		2%	39	>1	L O ⁵	~2.10 ⁵	~4	.104	~6.10 ³	$\sim 7.10^{2}$		
	~ knee												
	Protons and Helium												
Gf _{eff}	$\Delta E/E$	$\Delta E/E$ Depth E		o TeV	E>50	o TeV	E>100	oo TeV	E>200	DO TeV	E>4000 TeV		
m²si	.)	(γ^{I})	р	Не	р	Не	р	Не	р	Не	р	Не	
~4	40%	1.8	2.8 x10 ⁴	2.7 x10 ⁴	1.7X10 ³	1.8x10 ³	4.4×10^{2}	5.5X10 ²	1.0X10 ²	1.6x10 ²	1.7X10 ¹	3.6x1	

Some caveats....

- Please note:
 - The theoretical previsions for the knee region are really very much spread out!
 - Pre-PAMELA-ATIC-CREAM scenarium: simple single power low up tp the knee region
 - Post-PAMELA_ATIC_CREAM scenarium: the models have to exaplain the change in slope around 200 GV/c, and the different slopes btw protons and helium
 - Differents sources, different injectiuon spectra, closeby sources,,non standard propagation scenarium....
- Many works have been published in the last few years:
 - Thoudam and Horandel
 - Zatsepin, Panov, Sokolskaya.
 - Bernard, Delahaye, Keum, Liu, Salati, Taillet
 - Yuan, Zhang, Bi
 - Tomassetti
 - Blasi, Amato, Donato, Serpico

I can give you references if you are interested

- As a results, the expected spectrum around knee is unclear, and probably higher than the one expected up to few years ago
- Possible structures may arise?
- Direct measurementes are really essential!
- With the propsed calorimeter, we could measure well above the knee

The prototype

- We are building a small scale prototype to verify the performances and check that no weak points exist in the project
- First pre-prototype already constructed
 - 12 CsI(Tl) crystals 2.5x2.5x2.5cm³ (Thanks to Y.F. Wang!!!!!)
 - 6 layers with with a 3x3 matrix, with Iron cubes where CsI is not available
- Goal of the pre-prototype: test beam at Cern-SPS before the Cern accelerator shutdown for ~2 years
- The test has been completed on October 14!!!
- A more complete 144 3.6x3.6x3.6 cm³ prototype will be built in the next few months

Some comments on the required dynamic

range

CsI(Tl)

- $1 \text{ MIP/cm} = 1.25 \text{ MeV/(g/cm^2)}*4.5 \text{ g/cm}^3 = 5.62 \text{ MeV/cm}$
- 1 MIP (for cube 3.6 cm) = 5.62 *3.6 = 20 MeV
- Light yield = 54 000 ph/MeV
- Light yield for cube = $54\ 000^{*}20 \sim 10^{6}$ photons/MIP

Photodiode Excelitas VTH2090 (9.2 x 9.2 mm²) for small signals

- Geometry factor * Light collection efficiency = 0,045
- QE = 0.6
- Signal_{MIP} (CsI) = Light yield* Geometry factor* QE = 28.10³ e⁻

Small Photodiode (0.5 x 0.5 mm²) for large signals

- Geometry factor * Light collection efficiency = 1.3x10⁻⁴
- QE = 0.6
- Signal_{MIP} (CsI) = Light yield* Geometry factor* QE = 80 e⁻

Requirements on the preamplifier input signal:

- Minimum: 1/3 MIP= $10^4 e^- = 2$ fC (Large area PD)
- Maximum: $0.1xE_{part}$ = 100 TeV=5.10⁶ MIP=4.10⁸ e⁻= 64 pC (Small area PD)

By using two different PD we could well see MIP, and we could avoid saturation in one crystal provided we can find a suitable preamplifier chip $(64pC/2fC=3.10^4 \text{ dynamic range})$

The CASIS chip

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 5, OCTOBER 2010

- The CASIS chip, developed in Italy by Trieste, is very well suited for this purpose
- 16 channels, Charge Sensitive Ampl and Correlated Double Sampling
- Automatic switching btw low and high gain mode
- 2.8 mW/channel
- 3.10³ e⁻ noise for 100 pF input capacitance
- 53 pC maximum input charge
- The CASIS chip has been successfully used for the preprototype

A spot on the pre-prototype test beam

How to improve the calorimeter performances?

- We could try to see the Cherenkov light produced in the crystals by the electromagnetic component of the shower
 - 1. Improvement of the e/p rejection factor
 - 2. Improvement of the hadronic energy resolution (DREAM project)
- Problem: different response to electromagnetic and hadronic particles (e/h>1)
- Effect: worsening of energy resolution
- Solution: try to compensate the hadronic response to make it equal to electromagnetic one
 - 'Software compensation' developed in the last few years
 - Hardware compensation (~late 1980)

Hardware compensation

- Dual readout -> CsI: scintillation + Cherenkov
- Scintillation is sensitive to the overall energy release
- Cherenkov is sensitive to electromagnetic component
- Idea: measure Cherenkov light event by event, and use this info to correct the measured energy
- Pro: Possibility to use the timing information to discriminate btw scintillation (slow) and Cherenkov (fast) component
- Contro: Cherenkov light is a small fraction of the scintillaton light, compatible with the direct energy release in the PD....
- A dedicated R&D is still necessary

Dual-readout calorimetry with a full-size BGO electromagnetic section

N. Akchurin^a, F. Bedeschi^b, A. Cardini^c, R. Carosi^b, G. Ciapetti^d, R. Ferrari^e, S. Franchino^f, M. Fraternali^f, G. Gaudio^e, J. Hauptman^g, M. Incagli^b, F. Lacava^d, L. La Rotonda^h, T. Libeiro^a, M. Livan^f, E. Meoni^h, D. Pinci^d, A. Policicchio^{h,1}, S. Popescu^a, F. Scuri^b, A. Sill^a, W. Vandelliⁱ, T. Venturelli^h, C. Voena^d, I. Volobouev^a, R. Wigmans D^{*}ual readout -> BGO: scintillation + Cherenkov

Fig. 5. The time structure of a typical shower signal measured in the BGO em calorimeter equipped with a UV filter. These signals were measured with a sampling oscilloscope, which took a sample every 0.8 ns. The UV BGO signals were used to measure the relative contributions of scintillation light (gate 2) and Cherenkov light (gate 1).

Conclusion

- An homogeneous, isotropic calorimeter look to be an optimal tool for space experiments dedicated to high energy electrons and protons/nuclei
- The idea is under development for the Gamma-400 project, but could be eventually investigated for HERD?
- The status of the project is quite advanced:
 - Simulation
 - Prototype
 - Test beam

• We are available for any further discussion on this idea!!!

BACKUP

Shower starting point resolution

Proposal for an homogeneous isotropic calorimeter for space experiments

Counts estimation, electrons

G400 configuration: CsI(Tl), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap 0.3 Taking into account: geometrical factor and exp. duration selection efficiency 80%

Experiment	Duration	Planar GF (m² sr)	Calo σ (E)/E	Calo depth	e/p rejection factor	E > 0.5 TeV	E > 1 TeV	E > 2 TeV	E > 4 TeV
CALET	5 y	0,12	~2%	30 X ₀	10 ⁵	3193	611	95	10
AMS02	10 y	0,5**	~2%	16 X ₀	10 ^{3 **}	26606	5091	794	84
ATIC	30 d	0,25	~2%	18 X ₀	10 ⁴	109	21	3	0
FERMI	10 y	1,6@300 GeV * 0,6@800 GeV *	~15%	8,6 X ₀	104	59864	2545	0	0
G400	10 y	8,5	~0,9%	39 X ₀	10 ⁶	452303	86540	13502	1436

Counts estimation, protons and helium nuclei

Polygonato model G400 configuration: CsI(Tl), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap 0.3 cm Taking into account: geometrical factor and exp. duration + selection efficiency 80%

Experiment	p	Planar GF (m ² sr)	ε sel	Calo σ (E)/E	Calo depth	E > 0.1 PeV		E > 0.5 PeV		E > 1 PeV		E > 2 PeV		E > 4 PeV	
	uration		ε conv			р	Не	р	Не	р	Не	р	Не	р	Не
CALET 5 y	5 v	0.12	0,8	~40%	30 Χ ₀ 1,3 λ ₀	146	138	9	10	2	3	1	1	0	0
	Jy	0,12	0,5												
CREAM	180 d	0,43	0,8	~45%	20 Χ ₀ 1,2 λ ₀	41	39	0		1	1	0	0	0	0
			0,4 CT*					3	3						
ATIC	30 d	d 0,25	0,8	~37%	18 Χ ₀ 1,6 λ ₀	5	5		0 0	0 0	0	0	0	0	0
			0,5 CT*					0							
G400	10 1	9 E	0,8	~17%	7% 39 Χ ₀ 1,8 λ ₀	16521	45624	070	1000	000 001				10	24
	10 y	y 8,5	0,4	~1770			15024	979	1005	201	520	00	92	10	21

* carbon target

~ knee

