

The High Energy cosmic Radiation Detection (HERD) facility onboard China's Space Station

Shuang-Nan Zhang (张双南)

Center for Particle Astrophysics 粒子天体物理中心 Institute of High Energy Physics Chinese Academy of Sciences

Sea Level and Underground Exp. CMS, Daya-Bay Dark Matter Search Tibet High Altitude Cosmic-ray Observatory YBJ-ASγ, ARGO LHAASO

Space Projects AMS, CE, HXMT POLAR, DAMPE, SVOM SEMS, **XTP, HERD**

141 students, postdocs and visiting scholars Center for Particle Astrophysics

155 fulltime staff scientists and engineers

High Energy Cosmic-ray Charged Particles, Neutrinos, Gamma-rays

Explosive Phenomena GRB,SN&SNR BH&NS accretion Gravity & Cosmology Compact Objects Galaxy, Cluster CMB

中国科学院空间科学与应用总体示 GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION, CHINESE ACADEMY OF SCIENCES

2/35

Figure 2. (a) Rotation curves for the M33 galaxy [4]: *1*, the observed curve, *2*, theoretical curve of the glowing galactic disk. (b) Optical and (c) X-ray images of cluster 1E0657-558 obtained with the Hubble and Chandra telescopes, respectively. The curves show mass density contours reconstructed by gravitational lensing [5]. Horizontal axes are the inclination angles, vertical axes are the ascention angles.

Candidates for DM particles

- Neutrinos
 - Standard model neutrinos
 - Sterile neutrinos
 - Heavy and very heavy neutrinos
- WIMPs
 - Supersymmetric particles, e.g. neutralino
 - Kaluza-Klein states
- SWIMPs. E.g. axions
- Magnetic monopoles
- Mirror particles
- Exotic baryonic candidates
 - MAssive Compact Halo Objects (MACHO), Stragelets and nuclearities, Technibaryons, CHAMPs, Superheavy X-particles, Supersymmetric Q-balls, crypto-baryonic DM

中国科学院空间科学与应用总体部 GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION. CHINESE ACADEMY OF SCIENCES

Some Dark Matter Candidate Particles

Detection methods of WIMPs

• **Directly.** Via elastic scattering on detector CDMS, EDELWEISS nuclei in the lab.

Cryogenic detectors: ROSEBUD, CRESST-I Overheated liquid, droplet, and granule detectors:

Difficulty:

Scattering cross section <10⁻⁶ pb; Small Energy of recoil nuclei ~10-100 keV; High background;

Detection methods of WIMPs

• Indirectly. Via annihilation products e.g. gamma-rays, positrons, anti-protons, neutrinos.

The typical energy of these final states is about a tenth of the dark matter particle mass, so we can search indirectly for dark matter by looking for an excess of photons, antimatter or neutrinos in astrophysical data at energies between 1 GeV and 10 TeV. (*Bertone 2010*)

Annihilation place	particles	mission
Center of sun	neutrino	AMANDA, ICECUBE
Galactic center	photon	FERMI, HESS
Halo	positron	AMS, PAMELA, HEAT

China's Space Station Program

- Three phases
 - 1st phase: so far 7 Chinese astronauts have been sent out and returned back successfully; many space science research has been done.
 Completed successfully.
 - 2nd phase: spacelab: docking of 3 spaceships with astronauts delivering and installing scientific instruments. 1st launch on Sept. 29, 2011.
 - 3rd phase: spacestation: several large experimental cabins with astronauts working onboard constantly. 1st launch ~2018.

International collaborations on space science research have been and will continue to be an important part.

Cosmic Lighthouse Program onboard China's Space Station			
Candidate Projects	Main Science Topics		
Large scale imaging and spectroscopic survey facility (OK)	Dark energy, dark matter distribution, large scale structure of the universe		
HERD (OK)	Dark matter properties, cosmic ray composition, high energy electron and gamma-rays		
Soft X-ray-UV all sky monitor (?)	X-ray binaries, supernovae, gamma-ray bursts, active galactic nuclei, tidal disruption of stars by supermassive black holes		
X-ray polarimeter (?)	Black holes, neutron stars, accretion disks, supernova remnants		
Galactic warm-hot gas spectroscopic mapper (?)	The Milky Way, interstellar medium, missing baryons in the Universe		
High sensitivity solar high energy detector (?)	Solar flares, high energy particle acceleration mechanism, space weather		
Infrared spectroscopic survey telescope (?)	Stars, galaxies, active galactic nuclei		

background

HERD

He

Gamma-ray

proton

electron

E and

Dark matter particle

Brief scientific background: DM & CR

HERD Cosmic Ray Capability Requirement

Requirements for HERD

Science goals	Mission requirements
Dark matter search	R1: Better energy (& direction) measurements of e/ y between 100 MeV to 10 TeV
Origin of Galactic Cosmic rays	R2: Better composition (& specrtal) measurements of CRs between 100 GeV to PeV with a large geometrical factor

Secondary science (VHE Y -ray astronomy): monitoring of GRBs, microquasars, Blazars and other transients.

Neutron detector: B-doped plastic scintillator for delayed signals. Enhanced e/p discrimination. (TBD)

中国科学院空间科学与应用总体部 GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION, CHINESE ACADEMY OF SCIENCES

Main features

Performance	FOV	detectors
Good e/ y direction: R1	center	Shower Tracker + ECAL
e/ y discrimination: R1	center	Si-PIN + Shower Tracker
CR charge measurement up to z=26: R2	5-sides	Si-PIN + Shower Tracker
e/ y energy < 1 PeV: R1	center	ECAL + HCAL
CR spectrum < 1 PeV: R2	5-sides	HCAL+ Nucleon Tracker +ECAL + Shower Tracker
e/p discrimination: R1	center	HCAL+ECAL+ Neutron

Both requirements are satisfied. Almost every detector is used for both requirements; each function is performed with at least two detectors \rightarrow performance & redundancy.

Comparisons with other missions

	HER D	DAM PE	AMS	PAM ELA	FER MI	CALE T
e/ y Energy Res. @100GeV	1%	1.5%	3%	5%	10%	2%
e/ y Ang. Res. @100GeV	0.3 ⁰	0.8 ⁰	0.3 ⁰	1.0 ⁰	0.1 ⁰	0.3 ⁰
Geometrical Factor m ² .sr	1-2	0.3	0.1	0.02	1.0	0.1
e/p discrimination	5x10 ⁶	10 ⁵	10 ⁶	104	10 ³	10 ⁵
Energy range (GeV)	0.1- 10 ⁶	5-10 ⁴	0.1- 10 ³	0.1- 300	0.02- 300	5- 5x10 ³

HERD is advantageous in terms of energy resolution (e/ γ), geometrical factor (CR) and energy range (e/ γ & CR).

Event display: 200 GeV electron

200 GeV gamma

19/35

Back-splash rejection

Threshold > 100 keV: 20% back-splash rejected and 5% signal loss

22/35

e/ y energy reconstruction

23/35

GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION, CHINESE ACADEMY OF SCIENCES

e/ y energy resolution

CHINESE ACADEMY OF SCIENCES

Charge reconstruction: with SiPIN

Tracking optimization

 – Top tracker
 Scintillation Fibers (1 mm×1 mm) XY
 ● W: 6×0.175 cm 1×0.35 cm
 Separation: 3 cm
 • Readout channels: $700 \times 2 \times 7 = 9800$

Single track position vs no. of layers

Additional constraints: $\Delta x^2 < 1e-5$ Linear fit iterations < 10,000

Expect photon converted in the first few layers of the tracker, and the more hit layers the better resolution

0.5 mm position resolution \rightarrow ~0.4 deg

CsI light transmission and collection

Direct Coupling PD, APD, SiPM: Complicated system, high power consumption

> MAPMT, SiPM: high power consumption CCD: No single photon detection EMCCD, EBCCD: no ns gate control ICCD: no above problems, but premature

Wavelength Shifter Fiber

Test set-up and results

 $2 \times 2 \times 6$ granular CsI with fibers sandwiched between two detectors

Taper +Imaging Intensifier + ICCD

中国科学院空间科学与应用总体部

GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION.

CHINESE ACADEMY OF SCIENCES

31/35

ICCD image of typical muon events

Concept of ICCD readout system

Cathode Triggered Intensifier Optical Coupler

High frame rate and large format CCD

中继光锥

size, size of ϕ 176×670(mm).

中国科学院空间科学与应用总体部

GENERAL ESTABLISHMENT OF SPACE SCIENCE AND APPLICATION.

CHINESE ACADEMY OF SCIENCES

CCD器件

ACCENT OF ALL

The HERD Team

- Current member institutions (more wanted!)
 - Institute of High Energy Physics, China
 - Purple Mountain Observatory, China
 - Xi'an Institute of Optical and Precision Mechanics, China
 - University of Science and Technology of China
- Interested institutions (more wanted!)
 - University of Geneva, Switzerland
 - Università di Pisa, Italy
 - IAPS/INAF, Italy
 - University of Florence and INFN Firenze, Italy
 - University of Perugia, Italy
 - KTH, Sweden

Current status of HERD

- The mission concept (science goals with requirements) has been selected, not in competition with other missions.
- The design concept has been reviewed on Feb. 29, 2012, together with all other proposals in all fields.
 - A top ranked mission concept at this stage.
 - However simulations on the concept just started, much more needs to be done to have a real design.
- Technical review for mission selection may happen anytime.
- Launch in 2018-2020.

