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Outline

I Not a standard Fermi overview talk.

I Focus on what might be useful in planning a future high-energy
space detector.

I Basic design drivers. . .
I . . . and how they tie to the science requirements.

I Instrument implementation.

I Some selected science highlights:
I i.e., how it all worked out in practice. . .
I . . . and what still needs to be done.
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The Fermi Observatory

Large Area Telescope (LAT)

I Pair conversion telescope.

I Energy range: 20 MeV–300 GeV.

Gamma-ray Burst Monitor (GBM)

I 12 NaI and 2 BGO detectors.

I Energy range: 8 keV–30 MeV.
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Status of the Observatory at L+4

I Data taking trivia:
I > 250 B LAT readouts in orbit;
I > 50 B events down-linked to ground;
I > 700 M γ-ray candidates made public.

I All subsystem working properly, no performance degradation.
I More than 99% up-time collecting science data (out of the SAA).

I Including detector calibrations/hardware issues.
I Prime phase of the mission (5 years) ending in mid 2013.

I First senior review successfully passed in January 2012;
I The baseline is to operate through 2016 (TBR in 2014).
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“Observatory” = “Data are public”

I All LAT photon data go public immediately.
I Data access at http://fermi.gsfc.nasa.gov/ssc/

I The LAT collaboration also maintains and distributes the necessary
analysis elements (IRFs, diffuse models).

I Significant effort to make all the analysis improvements available to
the community at large as soon as possible.
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LAT stability
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I All subsystems working nominally (well above specifications).
I No sign of performance degradation after 4+ years in orbit.

Luca Baldini (UNIPI and INFN) HERD meeting, Beijing, October 17 2012 6 / 31



Detection principle

Photon Energy
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I Pair production is the dominant
interaction process for photons in the LAT
energy range;

I e+e− pair provides the information about
the γ-ray direction/energy;

I e+e− pair provides a clear signature for
background rejection (really?).
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Science design drivers

I Effective area and Point Spread Function:
I thickness and layout of conversion layers;
I PSF also drives the design of the sensors, the spacing of the

detection planes and the overall TKR design.

I Energy range and resolution:
I thickness and design of the calorimeter;

I Field of view:
I determined by the aspect ratio of the instrument;

I Charged particle background rejection:
I mainly drives the ACD design;
I also impacts the TKR and CAL design (which are needed for the

background rejection).
I need for a flexible triggering and event filtering system.
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Mission design drivers

I Launcher type and allocated space:
I maximum possible lateral dimensions of the instruments (i.e.

geometric area);
I about ∼ 1.8× 1.8 m2 for Fermi (the LAT footprint is actually
∼ 1.5× 1.5 m2).

I Power budget:
I number of electronics readout channels in the tracker (i.e strip pitch,

number of layers);
I about 650 W overall for Fermi;

I Mass budget:
I essentially limits the total depth of the calorimeter (once the

footprint is fixed);
I 3000 kg for Fermi.

I Telemetry bandwidth:
I need onboard filtering.

I Launch and operation in space:
I sustain the vibrational loads during the launch;
I operate in vacuum, sustain thermal gradients.
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The Large Area Telescope
Atwood, W. B. et al. 2009, ApJ, 697, 1071

Large Area telescope

I Overall modular design.

I 4 × 4 array of identical towers (each one including a tracker and a calorimeter module).

I Tracker surrounded by and Anti-Coincidence Detector (ACD)

Tracker

I Silicon strip detectors,
W conversion foils; 1.5
radiation lengths
on-axis.

I 10k sensors, 80 m2 of
silicon active area, 1M
readout channels.

I High-precision tracking,
short dead time.

Anti-Coincidence Detector

I Segmented (89 tiles) as
to minimize self-veto at
high energy.

I 0.9997 average
detection efficiency.

Calorimeter

I 1536 CsI(Tl) crystal; 8.6 radiation
lengths on-axis.

I Hodoscopic, 3D shower profile
reconstruction for leakage correction.
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Silicon Tracker/Converter (1/2)
Atwood, W. B. et al. 2007, Astropart. Phys., 28, 422–434

I Primary roles:
I convert γ rays into electron/positron pairs;
I main event trigger (more on this later);
I direction reconstruction.

I Also important for:
I background rejection (SSD veto, hit counting);
I energy measurement at low energy (i.e., below a few hundred MeV).

I Use of Silicon Strip Detector (SSD) technology:
I precise tracking with ∼ no detector-induced deadtime;
I self-triggering.

I Key features:
I ∼ 73 m2 of single-sided SSDs (400 µm thickness, 228 µm pitch);
I 884,736 independent readout channels (∼ 200 µW per channel);
I digital readout (plus layer OR time over threshold);
I ∼ 10−6 noise occupancy at the nominal 1/4 of a MIP threshold

(providing ∼ 100% detection efficiency).
I Running at < 500 (i.e. ∼ 5× 10−4) masked strips after 4+ years of

operation in space.

Luca Baldini (UNIPI and INFN) HERD meeting, Beijing, October 17 2012 11 / 31



Silicon Tracker/Converter (2/2)
Atwood, W. B. et al. 2007, Astropart. Phys., 28, 422–434

TKR front section

TKR back section

CAL

0 3% X×12 

0 18% X×4 

 no W×2 

I Trade-offs in the design of the tracker converter:
I overall thickness of the converter foils: conversion efficiency vs.

multiple scattering (limiting the angular resolution at low energy);
I number and spacing of the planes: energy dependence of the PSF;
I strip pitch: hit resolution vs. power consumption.

I 18 paired x–y layers (∼ 36 cm on a side, spaced by ∼ 3.5 cm) in
two distinct sections:

I front has better PSF and lower background contamination;
I 1.5 X0 on axis—that’s a lot for a tracker!
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The Tracker Electronic System
Baldini, L. et al. 2006, IEEE Trans. on Nucl. Sci., 53, 466–473

I Basic design
I 24 front-end chips and 2

controllers handle one Si layer
I Data can shift left/right to either

of the controllers (can bypass a
dead chip)

I Zero suppression takes place in
the controllers (hit strips + layer
OR TOT in the data stream)

I Two flat cables complete the
redundancy

I Key features
I Low power consumption (≈ 200 µW/channel)
I Low noise occupancy (≈ 1 noise hit per event in the full LAT)
I Self-triggering (three x–y planes in a row, i.e. sixfold coincidence)
I Redundancy, Si planes may be read out from the right or from the

left controller chip
I On board zero suppression
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Electromagnetic Calorimeter (1/2)
Grove, J. E. and Johnson, W. N. 2010, Proc. of SPIE, 7732, 77320J-1

I Primary roles:
I energy reconstruction;
I contribution to the event trigger (more on this later);

I Also important for:
I background rejection (shower shape);
I seeding the tracker reconstruction.

I Crystal detector elements:
I 8 layers of 12 CsI(Tl) crystals (27× 20× 326 mm3) per tower;
I hodoscopic stacking (alternating orthogonal layers);
I 8.6 X0 on-axis.

I Readout electronics:
I dual PIN photodiode on each crystal end;
I each one processes by two electronics chains (×1, ×8);
I four readout ranges, dynamic range 2 MeV–70 GeV per crystal.
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Electromagnetic Calorimeter (2/2)
Grove, J. E. and Johnson, W. N. 2010, Proc. of SPIE, 7732, 77320J-1

Calorimeter crystal

Positive end

Negative endLarge PIN photodiode

Small PIN photodiode

I CAL xtals with readout at each end:
I measure longitudinal position of the energy deposition from light

asymmetry;
I provide a full 3-dimensional image of the EM shower;

I CAL imaging capabilities are crucial for both background rejection
and energy reconstruction at high energy:

I remember, the LAT is ∼ 10 X0 on axis, so there is a significant
shower leakage out the back of the CAL.
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Energy resolution at high energy
Ackermann, M. et al. 2010, Review D, 82, 92004
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I Shower leakage becomes the main limiting factor above ∼ 10 GeV.
I The LAT is 1.5 + 8.6 = 10.1 X0 thick on axis—but the acceptance in

the FoV peaks at around ∼ 40◦.
I Energy reconstruction through a 3D fit of the shower profile:

I < 10% energy resolution at ∼ 300 GeV demonstrated at beam tests;
I Simulations indicate a decent energy resolution up to at least 1 TeV.
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The Anticoincidence Detector
Moiseev A. et al. 2007, Astropart. Phys. 27, 339–358

I Primary roles:
I event triggering and onboard filter (more on this later);
I background rejection.

I Also important for:
I identifying heavy ions for CAL calibration purposes.

I One important lesson learned from the previous mission:
I backsplash from the CAL in high-energy event can hit the ACD;
I can cause self-veto, especially for monolithic shields.

I The LAT ACD is segmented:
I 89 tiles (overlapping in one dimension) plus 8 ribbons (covering the

gaps in the other);
I can extrapolate tracks to specific tiles;
I this also makes complete hermeticity more difficult to achieve.

Luca Baldini (UNIPI and INFN) HERD meeting, Beijing, October 17 2012 17 / 31



Trigger and On-Board Filter
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I All subsystems contribute to the L1 hardware trigger (∼ 2.2 kHz):
I TKR: three consecutive TKR x-y planes hit in a row;
I CAL LO: single CAL log with more than 100 MeV (adjustable);
I CAL HI: single CAL log with more than 1 GeV (adjustable);
I ROI: MIP signal in the ACD tiles close to the triggering TKR tower;
I CNO: signal in one of the ACD tiles compatible with a heavy.

I Adjustable hardware prescales to limit the deadtime fraction:
I Programmable on-board filter to fit the data volume into the

allocated bandwidth (∼ 1.5 Mb/s average).
I Most of the ∼ 400 Hz of events passing the gamma filter and

downlinked to ground are actually charged-particle background.
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Instrument Response Functions
http://arxiv.org/abs/1206.1896, accepted for publication on ApJS
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I ∼ 2 m2 sr acceptance, ∼ 2.5 sr FoV, 10–15% ∆E/E .
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The Fermi-LAT in Context
Thompson, D. J., Baldini, L., Uchiyama, Y. 2011, Astropart. Phys., in press

 sr)2Acceptance (m

-310 -210 -110 1 10 210

Li
ve

tim
e 

(s
)

410

510

610

710

810

910

 = 1 monthobsT

 = 1 yearobsT

 = 1 dayobsT

 = 10 yearsobsT

 sr s
2 m

5
 = 10

f
E

 sr s
2 m

6
 = 10

f
E

 sr s
2 m

7
 = 10

f
E

 sr s
2 m

8
 = 10

f
E

AGILE

AMS01

AMS02 AMS02 (CAL only)

ATIC

BESS

BESS-Polar

BETS

Buffington 1972-73

CALET (planned)

CALET-Polar

CAPRICE94

COS-B

CREST

Daugherty 1972

EGRET

Nishimura 1968-79

Fanselow 1965-66

Fermi LAT

Golden 1976 Hartman 1977

HEAT

H.E.S.S.

MASS

Meegan 1969-73

Muller 1984

PAMELA

PEBS (planned)

PPB-BETS

Silverberg 1969-72

Tang 1980
TS93

Calorimetric
Space-based

Balloon

Spectrometers
Space-based

Balloon

I Fermi and AMS-02 are good examples of complementary design
concepts:

I acceptance (Fermi) vs. energy resolution and particle ID (AMS-02).
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Dissecting the gamma-ray sky

I The γ-ray sky
I Rate map (exposure corrected) of γ-candidates above 200 MeV

collected during the first year of data taking.
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Dissecting the gamma-ray sky

=

I Resolved point sources
I The catalogs are among the most important collaboration science

products (more about this in the following)
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Dissecting the gamma-ray sky

= +

I Galactic diffuse radiation (accounts for the vast majority of photons)
I Cosmic-ray interactions with the interstellar medium (Synchrotron,

Inverse Compton, π0 decay, Bremsstrahlung).
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Dissecting the gamma-ray sky

= + +

I Isotropic diffuse
I Unresolved sources and truly diffuse (extragalactic) emission.
I Residual cosmic-rays surviving background rejection filters.
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Statistics is the culprit at high energy
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I Both for point source and diffuse studies
I (e.g., ∼ 1 EGB γ-ray per week above 100 GeV)
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The Second Fermi Catalog (2FGL)
Nolan, P. L. et al. 2012, ApJS, 199, 31

I Dataset: 24 months of data (100 MeV–100 GeV), 35.7 M events.
I 1873 sources (the deepest catalog ever in this energy range).
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Power law source detection threshold

—Low energy

Bkg. dominated
∝
√
t

—High energy

Photon counting
∝ t

I Envelope of the minimum detectable power-law spectra over the full
band, varying the spectral index (not a differential sensitivity plot).

I Accounts for uncertainties in the background and source density

I High-energy limiting sensitivity comes from photon counting
statistics (rather than the background)

I Fermi sensitivity increasing linearly with time;
I Note: a better background rejection or PSF won’t help much.
I (And more: complementarity with ground-based telescopes).
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Cosmic-Ray Electron Spectrum
Ackermann, M. et al. 2010 Phys. Rev. D 82, 092004
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I First systematic-limited measurement of the CRE spectrum between
7 GeV and 1 TeV.

I Significant work put toward improving the energy reconstruction at
very high energy (a few TeV is the goal).

I Calorimeter crystal saturation currently limiting the energy reach.
I See http://arxiv.org/abs/1210.2558 for the state of the art.

I Confirming the cutoff measured by H.E.S.S. would clearly be of
great interest.
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CRE anisotropies
Abdo et al., Phys. Rev. D 82, 092003 (2010)
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I Fermi offers a unique opportunity for the measurement of possible
CRE anisotropies

I Key factors: large exposure factor and large field of view
I Most stringent upper limits to date based on one year of data

I More than 1.6 M CRE candidate above 60 GeV
I Limits are comparable to the level of anisotropy expected in realistic

models
I Can potentially expect to detect a signal in 8–10 years

I Again: need a (even) larger exposure if you want to do better!
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Separate CR Electron and Positron Spectra
M. Ackermann et al. 2012, PRL 108, 011103

I First measurement of separate electron and positron spectra in this
energy range.

I Limited by statistics at high-energy, as we need special data-taking
runs looking down for this analysis).

I Positron fraction increasing with energy (consistent with Pamela).

I This will likely be AMS’ playground in the near future.
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Isotropic Gamma-Ray Background
Abdo A. A. et al. 2010, Phys. Rev. Lett., 104, 101101

Prelim
inary

I Tremendous scientific interest in pushing this measurement to the
highest possible energies.

I Statistics and, to a lesser extent, background rejection are the
limiting factor.

I Work ongoing in extending the spectrum to ∼ 1 TeV.
I New energy reconstruction (http://arxiv.org/abs/1210.2558), better

event selection.
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Prospects for indirect Dark Matter searches

Thermal relic cross section

I dSph are the cleanest target for DM searches w/ Fermi

I Current limits on WIMP annihilation cross-section using dSph are
the most constraining; they’ll improve with improved statistics

I as 1/
√
t in the bkg-dominated region, as ∼ 1/t at high energy

I Optical surveys will discover more dSphs
I Current dSphs come from SDSS covering about 1/4 of the sky
I DES and PanSTARRS are ramping up

I Potential for stringent constraints on WIMP models
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A Gamma-Ray Line at 130 GeV?

I (The Fermi LAT collaboration normally does not comment on
analyses done by the scientific community using the publicly
available LAT data. . . )

I A recent claim of a feature at ∼ 130 GeV in gamma rays triggered a
huge interest in the community.

I Really a handful of events!
I Very hard to tell whether the feature is real, or just a statistical

fluctuation or an instrument artifact.

I In prospect: a good example of a science topic in which a better
energy resolution would be beneficial.

I But not if you have to trade too much acceptance for that!
I (And is there any other easy way to do that?)
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Conclusions

I Fermi is approaching the end of its prime phase (5 years, ending in
August 2013).

I The observatory performed extremely well, both from the operational
and the scientific standpoint.

I The basic design choices really proved to be rewarding.
I Good example of a HEA/HEP joint venture.

I Exciting perspectives for a successful extended phase of the mission.
I Benefits well beyond the expectations from just a deeper exposure.

I Many interesting questions at high energy related to the Fermi
science menu.

I They will likely evolve in the next few years.

I For most of them the statistics (rather than the energy resolution or
the particle identification) is the main issue: need a big instrument!
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