Towards a unified hadron-quark equation of state for neutron stars within the
relativistic mean-field model

Marcos O. Celi, Mauro Mariani, Milva G. Orsaria, Ignacio F. Ranea-Sandoval, and
Germ an Lugones

Phys. Rev. D 112, 123001  arxiv:2511.01820v2

2026/1/1 LHEIE



Background & Motivation

* The Equation of State (EoS) of dense matter beyond nuclear
saturation density lacks a first-principles description.

* Common strategy: Independently model hadronic and quark phases,
then "paste" them together (Maxwell/Gibbs construction).

* Problem: Artificial separation; the phase transition is imposed, not
derived.

* Goal: Develop a unified framework with a single Lagrangian where
the hadron-quark transition emerges dynamically.



Overview of the EVA-01 Model

e Based on the DDRMF-SWA4L parametrization, extended with a Polyakov-loop-
inspired scalar field @ to govern deconfinement.

* Particle Content:
Hadrons: nucleons, hyperons, A resonances.
Quarks: u, d, s.
Leptons: U, V.
Meson fields: o, w, p, P,
* Key Role of @: Modulates effective masses.
® = 0 - Hadrons favored (low mass), quarks suppressed (high mass)
® = 1 - Quarks favored, hadrons suppressed.

Parameters tuned to satisfy nuclear saturation properties and astrophysical
constraints.



Lagrangian and Field Equations

e Unified Lagrangian Density:
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Lagrangian and Field Equations

e Effective Masses:
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Equations of Motion derived via variational principle.

Density-dependent couplings (especially for p meson) - rearrangement
term ensures thermodynamic consistency.
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Phase Diagram Results

* Three identified first-order phase transitions:
1. Nuclear Liquid-Gas transition (low density).
2. Deconfinement transition (hadron - quark matter).

3. Chiral Symmetry Restoration transition (within the quark phase).

Deconfinement and chiral transitions are separated, opening a possible
"quarkyonic" region.

No Critical End Point (CEP) found in the studied range. The transition
remains first-order up to T ~ 150 MeV.



Phase Diagram
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* Orange curve: Nuclear liquid-gas coexistence line with its critical point.
* Highlight the region between green and blue curves.



Proto-Neutron Star Evolution Snapshots

* Three isentropic snapshots model key PNS thermal evolution stages:

Stage 1: Early PNS (~1-2 s). High trapped lepton fraction( = 0.4),
entropy per baryon s= 1.

Stage 2: Hot post-neutrino-diffusion phase (~10-15 s). Neutrino-free,
muons present, s= 2.

Stage 3: Cold, catalyzed Neutron Star. T=0, in full B-equilibrium.

* Crust EoS: Sequentially cooled (T=5 MeV - 2 MeV - 0) to mimic
realistic PNS cooling.



Equation of State Comparison
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Temperature & Speed of Sound Profiles
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* Temperature vs. Density:

Isothermal crust - Isentropic hadron
phase (T increases) = Isentropic quark phase.

Temperature is continuous at the
phase boundary while Entropy density jumps

» Speed of Sound squared

Hadron phase: Varies with stage; peaks
in Stage 1.

Quark phase: For all stages, converges
toward the conformal limit / 2= 1/3 at
high density.
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Mass-Radius Relations
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* Thermal Evolution: Radii contract significantly from hot (Stages 1&2) to cold (Stage 3).
Maximum mass slightly decreases from Stage 1 to Stage 2.



Thanks!



