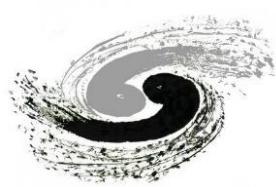


SiPM needs for CEPC sub-detectors (a brief review and discussions)

Yuekun Heng (IHEP), Hengne Li (SCNU), Yong Liu (IHEP),
Zhonghua Qin (IHEP), Xiaolong Wang (FUD), Haijun Yang (SJTU)
CEPC Day (Jan. 28, 2026)

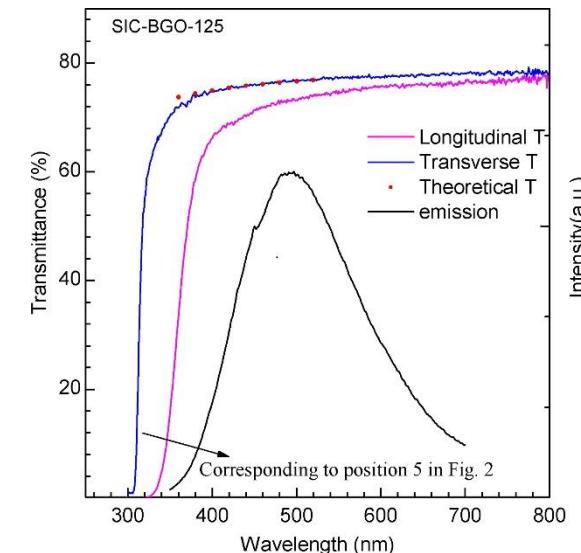

Disclaimer: slides prepared based on the input collected from ECAL, HCAL, Muon and RICH.
SiPM requirements for RICH are still preliminary and need further studies.

Outline

- Briefly go through SiPM candidates listed in CEPC Ref-TDR
 - For ECAL, HCAL and Muon Detector
- Summarise/highlight common needs and identify issues to be addressed
- SiPM requirements for Cherenkov Detector
 - New with respect to CEPC Ref-TDR: *still in development*
- Backup slides: information on SiPM development
 - Collaboration with industry: NDL-SiPM news
 - International collaboration within DRD4 (Photodetectors and PID techniques)

SiPM candidates in CEPC Ref-TDR: ECAL

- Key requirement: a large dynamic range
 - Dynamic range: 0.1 – 3000 MIPs
 - $1 - 2 \times 10^5$ pixels in the sensitive area of $3 \times 3 \text{ mm}^2$
 - Pixel pitch: 6 – 10 μm (with a typical gain of 10^5)
- Desirable features: low inter-pixel crosstalk, peak PDE compatible with BGO/BSO (480nm)


SiPMs for ECAL

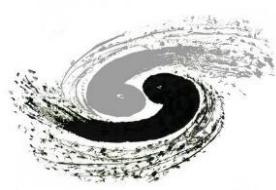
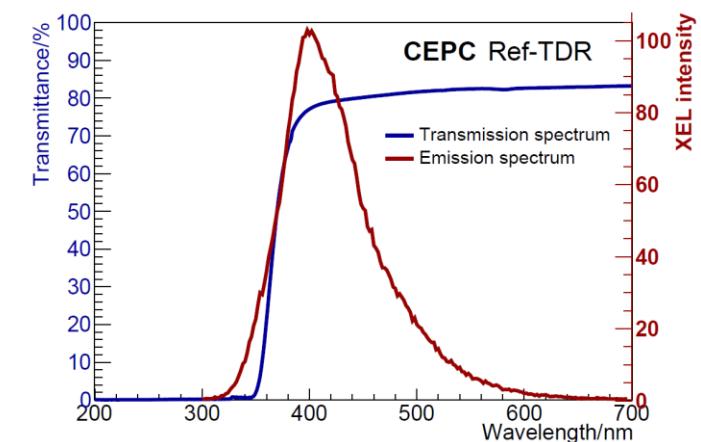

- Quantity: 571,000 pcs
- Total area: 5.14 m^2

Table 7.2: Parameters of SiPM candidates selected for the crystal ECAL

SiPM Type	NDL EQR06	NDL EQR10	HPK S14160-3010PS
Pixel Pitch μm	6	10	10
Pixel Quantity in $3 \times 3 \text{ mm}^2$	244,719	90,000	89,984
Pixel Gain	8×10^4	1.7×10^5	1.8×10^5
Typical peak PDE	30 % (at 420 nm)	36 % (at 420 nm)	18 % (at 460 nm)
Typical DCR (20 °C)	2.5 MHz	3.6 MHz	700 kHz
Inter-pixel Crosstalk	12 %	N/A	< 1 %
Terminal Capacitance (pF)	45.9 pF	31.5 pF	530 pF

60cm BGO from SIC ([paper](#))




SiPM candidates in CEPC Ref-TDR: HCAL

- Key requirement: balance of signal-to-noise ratio and dynamic range
 - Dynamic range: 0.1 – 100 MIPs
 - $\sim 10^4$ pixels in $3 \times 3 \text{ mm}^2$
 - Pixel pitch: 15 – 20 μm (with a typical gain of 10^6)
- Desirable features: low inter-pixel crosstalk, peak PDE compatible with glass (GFO 400 nm)

Table 8.4: The parameters of some typical commercial SiPMs.

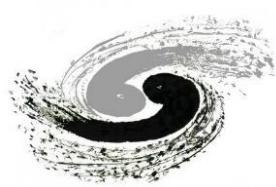
Supplier	HPK	NDL	JBT	
Type	S14160-3015PS	S14160-3050HS	EQR20-11-3030-S	JSP-TP3050-SMT
Pitch [μm]	15	50	20	50
Number of pixels	39984	3531	22500	3364
Terminal capacitance [pF]	530	500	157.5	170 (fF)
Breakdown voltage (V_B) [V]	38 ± 3	38 ± 3	27.2 ± 1	24.6 ± 0.2
Recommended operation voltage [V]	$V_B + 3$	$V_B + 2.7$	$V_B + 5$	$V_B + 2$
Peak sensitive wavelength [nm]	450	450	420	420
Peak PDE at PSW [%]	32	50	47.8	35
PDE at 400 nm [%]	27	47	45	33
Gain	3.6×10^5	2.5×10^6	8.0×10^5	2.1×10^6
DCR [kHz/mm^2]	700–2100	10–100	150–450	120–270

SiPM candidates in CEPC Ref-TDR: Muon Detector

- Key requirement: a high signal-to-noise ratio
 - SiPM candidates: HPK S14160-3050, NDL EQR20-11-3030
 - Pixel pitch: 20 – 50 μm (with a typical gain of 10^6)
 - Sensitive area: $3 \times 3 \text{ mm}^2$
 - A low inter-pixel crosstalk: a few percent

[HPK MPPC Data Sheet](#)

Electrical and optical characteristics (Typ. $\text{Ta}=25^\circ\text{C}$, $\text{V}_{\text{over}}=2.7 \text{ V}$, unless otherwise noted)


Parameter	Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit
Spectral response range	λ		270 to 900		nm
Peak sensitivity wavelength	λ_{p}		450		nm
Photon detection efficiency at $\lambda_{\text{p}}^{\text{*3}}$	PDE		50		%
Breakdown voltage	V_{BR}		38		V
Recommended operating voltage ^{*4}	V_{op}		$\text{V}_{\text{BR}} + 2.7$		V
V _{op} variation between channels in one product ^{*5}	Typ. Max.	-	0.1 0.2		V
Dark current	Typ. Max.	ID	0.6 1.8	1.1 3.3	μA μA
Crosstalk probability	-		7		%
Terminal capacitance	C_{t}	500	900	2000	pF
Gain	M		2.5×10^6		-
Temperature coefficient of recommended reverse voltage	$\Delta\text{V}_{\text{op}}$		34		$\text{mV}/^\circ\text{C}$

[SiPMs for Muon Detector](#)

- Quantity: 43,000 pcs
- Total area: 0.4 m^2

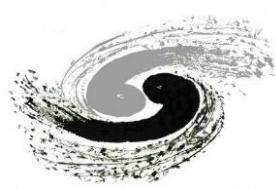
[NDL-SiPM Data Sheet](#)

Type	EQR20 11-3030D-S	EQR20 11-6060D-S
Effective Pitch	$20 \mu\text{m}$	
Element Number	1×1	
Active Area	$3.0 \times 3.0 \text{ mm}^2$	$6.24 \times 6.24 \text{ mm}^2$
Micro-cell Number	22500	97344
Terminal Capacitance ¹	57.5 pF	397
Breakdown Voltage (V_{B})	$27.2 \text{ V} \pm 1 \text{ V}$	
Maximum operation voltage (V_{m})	$34.7 \pm 1.6 \text{ V}$	
Recommended Operation Voltage ²	$\text{V}_{\text{B}} + 5 \text{ V}$	
Temperature Coefficient for V_{B}	$24.8 \text{ mV}/^\circ\text{C}$	
Peak PDE @ 420nm	47.8	
Gain	8.0×10^5	
Dark Count Rate (DCR)	typical	$150 \text{ kHz}/\text{mm}^2$
	maximum	$450 \text{ kHz}/\text{mm}^2$

SiPM common needs (scintillator readout)

- Two SiPM types identified: sensitive area of $3 \times 3 \text{ mm}^2$
 - High Dynamic Range for ECAL: $6 - 10 \mu\text{m}$ pixel pitch
 - High Signal-to-Noise Ratio for HCAL/Muon: $\sim 20 \mu\text{m}$ pixel pitch
- Low inter-pixel crosstalk
 - State-of-art level: $< 1\% *$
- Peak PDE compatible with crystal/glass
 - (Not an issue for Muon Detector: perfect peak PDE matching with plastic scintillator)
 - BGO/BSO peak emission at 480 nm; GFO glass peak emission at 400 nm
 - Existing SiPM candidates: peak PDE at 450/460 nm (HPK) or 420 nm (NDL)
- Radiation hardness: in endcap/forward regions
 - Crystal ECAL studies in Ref-TDR: NIEL up to $1 \times 10^{10} \text{n}_{\text{eq}}(1\text{MeV}) \text{ cm}^{-2}$ at 20°C ([paper](#))
 - CMS HGCAL SiPM-on-Tile modules: fluence up to $4 \times 10^{13} \text{n}_{\text{eq}}(1\text{MeV}) \text{ cm}^{-2}$ at -35°C
- Towards the final detector: production yield, QA/QC and cost

SiPMs for ECAL, HCAL and Muon


- Quantity: 5.81M pcs
- Total area: 52.3 m^2

*Using trenches implemented in pixels: limited PDE in HDR-SiPM for ECAL; not feasible for EQR-SiPM from NDL

To be addressed

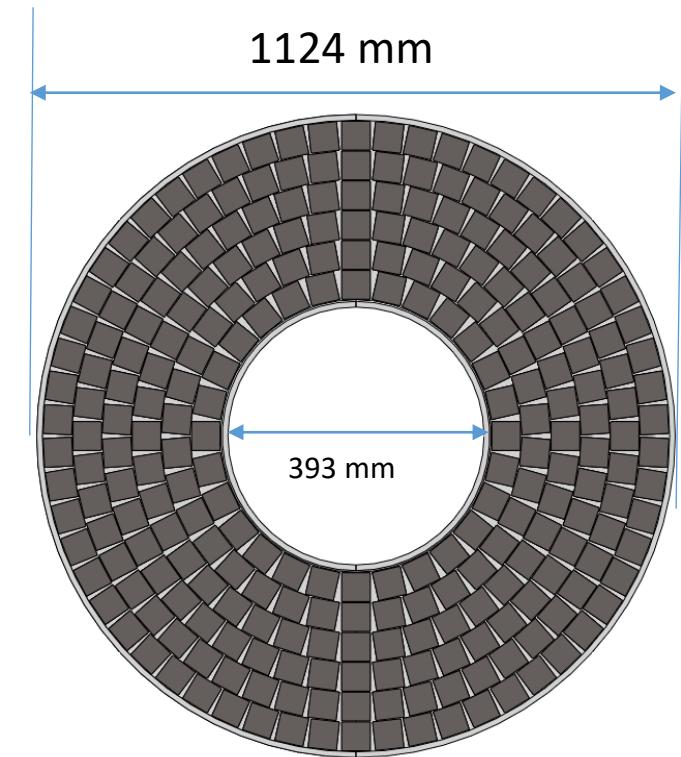
To be addressed

To be addressed

SiPM needs for Cherenkov Detector

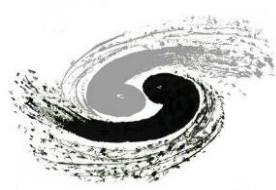
RICH

- Key requirements
 - High PDE and low noise
 - Radiation tolerance
 - Single photon detection capability
- Preliminary parameters


Parameters	Requirement (preliminary)
Photon Detection Efficiency	> 50% (420nm)
Sensitive Area (two SiPM types identified)	Type 1: $1 \times 1 \text{ mm}^2$ (conventional); Type 2: $3 \times 3 \text{ mm}^2$ (position sensitive)
Dark noise rate	$< \sim 10 \text{ kHz/mm}^2$ (to be further studied)
Spatial resolution	$\sim 280 \mu\text{m}$
Radiation tolerance	$< 10^{13} \text{ N}_{\text{eq.}}/\text{cm}^2$ (to be further studied)

- SiPM radiation hardness: [talk in RICH2025](#)
- VUV-sensitive SiPM: [nEXO paper \(2022\)](#)
- SiPM-Based RICH: [Particles 2025, 8\(4\), 94](#)

SiPMs for RICH


- Total area: 1.6 m^2

RICH conceptual design

Photon detector:


- 258 modules in 6 layers
- Each module of $5 \text{ cm} \times 5 \text{ cm}$

Backup slides

Information on SiPM development

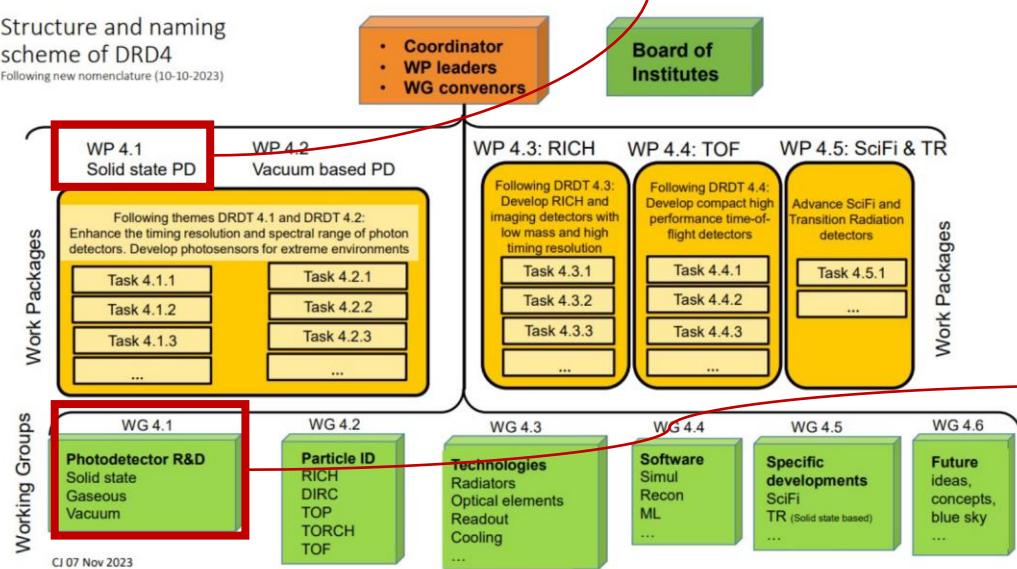
Information: SiPM development in collaboration with industry

- NDL for custom-made SiPM prototypes
 - Multi-Project Wafer (MPW) service, starting in Q1 2026
 - 6-inch wafers
 - Two SiPM types: Epitaxial Quenching Resistor (EQR), Position Sensitive (PSS)
- NDL MPW schedule in 2026
 - Submission deadlines: March 13, July 3 and October 30

MPW Process

The active area, microcell pitch, and array size of customized devices are as follows:

Devices	Microcell Pitch	Active Area of EQR SiPM/PSS SiPM/APD/PIN						
		(0.5-9.5) -9.5 mm ²	6×6 mm ²	3×3 mm ²	1×1 mm ²	0.75×0.5 mm ²	0.5×0.5 mm ²	0.25×0.25 mm ²
EQR/PSS SiPM	20 μm	1×1- 12×1	NA*	NA*	3×3 1×16	1×32	4×32	8×64
	15 μm	1×1- 12×1	1×1	NA*	3×3 1×16	1×32	4×32	8×64
	10 μm	NA	NA	1×1	3×3 1×16	1×32	4×32	8×64
APD/PIN	/	1×1- 12×1	1×1	1×1	1×16	1×32	NA	NA


* Standard devices available in stock from Capital Photonics Co., Ltd.

EQR-SiPM: candidate for most sub-detectors
PSS-SiPM: potentially interesting for RICH

Information: SiPM development in DRD4 collaboration

DRD4 structure (from the Proposal)

Working Package 1

WP1: Solid-State Photodetectors

- Task 1 - SSPD with new configurations and modes
 - Development of back-side illuminated SiPM (potential for better PDE and radiation tolerance); development of ultra-granular SiPM that integrates with the electronics by using 2.5D or 3D interconnection techniques; development of CMOS-SPAD light monolithic sensors for HEP; study of new materials for light detection
- Task 2 - Fast radiation hard SiPMs
 - Standardize procedures for quantification of radiation effects; irradiated SiPMs characterization in wide temperatures range (down to -200 °C); study of annealing; study and quantify other measures enabling the use of SiPM in highly irradiated areas (e.g. smaller SiPMs, macro- and micro-light collectors)
- Task 3 - Timing of SSPD, including readout electronics
 - Study and improve the timing of SiPMs; co-design of a multi-ch. readout ASIC exploiting the timing potential; integration and packaging with integrated cooling; vertical integration of SiPM arrays to FEE (better timing via reduction of interconnections' parasitic inductances and capacitances)

Working Group 1

WG1: Photon Detectors

- Scientific forum for studies and development of novel photodetectors with focus on PID for future experiments
- Topics (selection):
 - Radiation hardness; timing resolution; high-rate capabilities; longevity
 - Extreme conditions: e.g., cryogenic and high magnetic field
 - Large-area (e.g. SiPMs arrays, LAPPDs, etc.); hybrid detectors
 - Fine granularity detectors for future high-rate experiments
 - New technologies: CMOS-SPADs, new SiPM structures, BSI SiPMs
 - New photocathode structures and materials
 - Novel materials for photon detection: e.g., Ge-on-Si APDs;
 - Read-out electronics for extreme environments, fast timing and high channel density; optimal sensors and R/O electronics integration
 - Simulations of photo-detector response
- Standardization of procedures for photodetectors characterization

- DRD4 status report: photon detectors and PID ([Corfu2025 talk](#))
- The DRD4 Collaboration for research and development on photon detectors and particle identification techniques ([RICH2025 talk](#))