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Motivation for Luminosity precision at CEPC

« Higgs: O(10°) statistics in 15 years operation
« Z: O(107?) statistics in ~4 years
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Roadmap for CEPC LumiCal

« CEPC project general timescale
— Higgs mode: ~5+5 year from now
— Z and WW mode: future upgrade, ~10+15 years from now

Operation \s L Years  Event
mode (GeV) (10** cm™2s71) yields
H 240 5 15 2.0x10°
Z 91 26(*) 4  56x101
Wr*w-  155-170 16 1 1.0x107(T)

« Roadmap

— First version for Higgs mode, in terms of coverage, precision,
background and radiation tolerance, etc.

— A major upgrade foreseen to meet the requirement for Z pole,
with at least 10 year more R&D time



Luminosity measurement at CEPC

 Lumi. Meas.: counting the rate of the well-known process
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* Requirements for lumi. measurement physics process
* Large rate, so as not to be statistics limited
* Clean signature with low background, e.g. electron, photon, muons, etc

* High-precision theory predictions and MC tools

« Small-angle Bhabha scattering (SABS) ete-— ete-
* Dominant process in e+e- colliders

« ete >yyand ete —uu mainly depend on the central detector and will
not be discussed in this talk



Small-angle Bhabha scattering (SABS)

e Cross section of SABS ete-— ete-
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« Peaked in the forward region, at <100 mRad
Dedicated detector needed

Precision of the low edge positioning is critical

monitors




CEPC LumiCal design

« Two detectors on each side of Interaction Point

* Low-mass beampipe window: Be 1mm thick, traversing @22 mRad,
traversing L= 45 mm, = 0.13 X, (Be)
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CEPC LumiCal design

« Before flange: z = 560~700 mm: 2 Si-tracker and 2 X, LYSO (23 mm)

« After Bellow: z=900~1100 mm: 13X, LYSO (150 mm)

LumiCal .

« Two layer AC-LGAD trackers

e 2D readout of electron hits

Si-wafer surface plan with sample of segmentation
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 First 2D sensor manufactured
« Thanks to OTK group!

* Further iteration needed
* Setup the test system




LumiCal acceptance

* e*e” beam colliding at 33 mRad crossing angle
* Final state e*e” boosted in x direction
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« LumiCal acceptance at |z|=1000mm, with RaceTrack pipe r=10mm

ONE e* or e~ detected e?, e~ back-to-back detected
6>25 mRad 0>25mR & |y|>25mm 0>25 mRad 0>25mR & |y|>25mm
133.5 nb 81.8 nb 85.4 nb 78.0 nb




Energy measurement
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Major background: incoherent yy — e*e™
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Background rate (preliminary)
« Higgs and Low Z: O(<100 KHz/mm?)
e Challenging but controllable

« High Z mode: up to O(1 MHz /mm?)
* Further studies and R&D needed
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Fast Lumi. monitor

« Fast beam monitor: diamond detector option
e |z|=855~1110 mm, ~10 mRad (CMS) ~25 mRad (LAB)

e Count Bhabha electrons to monitor fast lumi. and IP along z-axis
>4 LYSO bars rm%‘m
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Diamond detector R&D

Diamond IV Characteristics (8 strips)

° Strip eleCtrOde 160' —®- Total Current
* Full surface process chain with an old i

diamond chip

Current (pA)
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* Plan: Need new high quality diamond
for further studies, e.g. MIP response, etc.
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Preliminary tests with source meter:
I-V, Alpha radioactive source
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Radiation tolerance

« SiPM largely used in LumiCal
* |ts radiation hardness and long term stability, to be investigated

* Afterirradiation, the dark current will be increase

* Possible solutions:
* Install cooling system to prevent thermal runaway
* Continue investigation on mitigation and shielding
* Planning possible replacements in the during stop

* Foreseen a major upgrade for Z pole mode in >10 years

 Further detector R&D

* Investigate the radiation hard photo detection technologies

e Study the new SiPM types in the current colliders, e.g. BEPCII
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Tests at BESIII experiment

« BEPCII-BESIII experiment

e e+e-collider, COM energy: ~2-5 GeV, Luminosity: ~1033cm2/s

« Zero-Degree-Calorimeter(ZDC)
e Fast luminosity and ISR photon tagging

e LYSO+SiPM array, 240 channels in total 3.3m <z<3.5m,
0=0 in CMS frame
]




BESIII ZDC: LYSO+SIPM proto-type

« BEPCII-BESIII experiment

e e+e-collider, COM energy: ~2-5 GeV, Luminosity: ~1033cm2/s

« Zero-Degree-Calorimeter(ZDC)
e Fast luminosity and ISR photon tagging
e LYSO+SiPM array, 240 channels in total

Single detector
dulevtest
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BESIII ZDC: LYSO+SIPM proto-type

W

 Pictures of the current test system
* Pre-amplifier, High voltage fanout, DAQ, etc.

* Long term study and monitor the SiPM
performance insitu
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Very preliminary results

Event rate at each channel
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BESIII ZDC: Electronics & TDAQ

* Readout electronics design
* Trigger board(FCDB): Interface to BESIII trigger system
 ADC board(ADC-FMC): Carrier board through FMC connector
* FPGA carrier board: Process digitized signal from ADC, send to DAQ
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Trigger&data flow

 |deal test place for wireless communication!
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On-site




2. LYSO+SiPM calorimeter

MPT-2321 Chip

* Future upgrade: ASIC based readout

. MPT-2321: SiPM Signal Processing Chip (amma) L
: T
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« CEPC LumiCal system design finished

« Extensive detector R&D performed
« Sitracker: first version of novel 2D AC-LGAD sensor produced
* Need to setup the test system and resources for future iterations
 LYSO+SiPM calorimeter:
* Get support from BEPCII luminometer upgrade
« Prototyping and tests on-going at collider
« Daimond: surface process tested with an old diamond chip
* Need high quality diamond for further R&D
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Experimental challenges

» Detector aperture, position and alignment
* Especially the inner radius

« Electron Multiple scattering

« Position of interaction point (IP)

 Radiation tolerance

23



Detector aperture, position and alignment
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« Conceptual experiment

Multiple scattering

cosmic muon scattering at 30 mm Pb

12 Si-strip tracker

Cosmic ray Muon, > 1 GeV filtered
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Multiple scattering

* Preliminary results

i A RooPlot of "angle"
Cosmic Muon energy spectrum ooFlot of "angle

~ 290 F_ thetat0_T100:59.0%
S theta5: 8.6% ’
s 2oo§ﬁ theta2: 31.1% + Data Fit
; . ) I 2 jgo[ thetal:12%
I g E  y%ndf = 0.61 — MC Fit
| (B) 1 W 160 Hll p-value = 0.9849
% 10‘6 140:
s 20 - Scattering angle fit with
T 0, ' 100 muon templates of 1, 2, 5,
(D LD ! A~ -
) 80 10-100GeV
Nz 60 —
_8 —
' 10 40—
= =
= ] 20F-
§ 0= l()1.005 0.01 0015 0.02 0.025 003 0.035 0.04 0045 0.05
™ £ This : e
T 0_10 :— Work Exp q E **
0 F — o 277om11.26v : = ] 1l it
— E £
8 — owmmaoy AR
10 10° 10°* 10° = ) + LT LT

Muon Energy (MeV)

Ref: Journal.pone.0144679
26



Interaction Position (IP)

* Real IP position can be shifted

flange flange

BPM flange

3 - y=s dX- <
J X+
flange dx, dz monitoring

flange flange

 Beam induced acceptance change
 Beam-energy asymmetry, IP displacements,
« Cross section changed with the beam energy,
» Focusing of final state particles through beam bunches

* |P measurement along x-y plane
« Beam position monitors (BPMs) inside flanges
* Precision O(1 um) on the beam x,y positions
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Theoretical challenges

« Hadronic vacuum polarisation contribution

* Extracted from data for ete"—>hadrons or from lattice QCD
e Data-driven from (Bellell, BESIII, CMD-3, SND), expected
the uncertainty to be reduced below 10~ level
* Generator studies
« BHLUMI 4.04 S. Jadach, 0.037% precision [PLB 803 (2020) 135319]
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Alternative process: di-photon (ete=—vyy)

O-'Y'Y(H > Omin) = 130 nb (1 — Pe_ Pe+) (loge }tﬁgig::i) — COS Hmin)/ S[GeVz]
« QED process: do/d6~1/6

Pl A kY
» Potentially advantages over SABS ) )
Pr Pr
* Severe metrology requirements
» Significant impact of the hadronic vacuum ¢ A kY
polarisation
Relaxed selection 10<6<170°
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If we want to increase statistics by using 10<6<170° selection then 10 contamination from the ee — ee process appears.

To suppress this ee — ee background the condition abs(A@,,) <1.75 could be used. In this case:

ee — vy 688081 events selected from 1M (~69% efficiency) A. Kharla mov, et al

ee — ee 0 events selected from 200k (without abs(Ag,,) <1.75 2 events selected) 29



Di-photon: challenges

« Experimental
e Statistical precision, ~1000 times smaller than SABS

* Acceptance/metrology: looser than the SABS. But, here for the whole
central detector, with several components

 Theoretical

* Photon vacuum polarisation (Hadronic light-by-light (Ibl) scattering ) only
appears one order higher than in SABS, but with larger uncertainty.

e Estimated from data driven hadronic models or lattice QCD
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Beam Position Monitor

Survey/monitoring, for Beam IP position
— Beam Probe Monitor BPM , IP x,y to 1 um
— Position monitoring, Flange dx,dy ~1 um, dz~ 50 uym
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