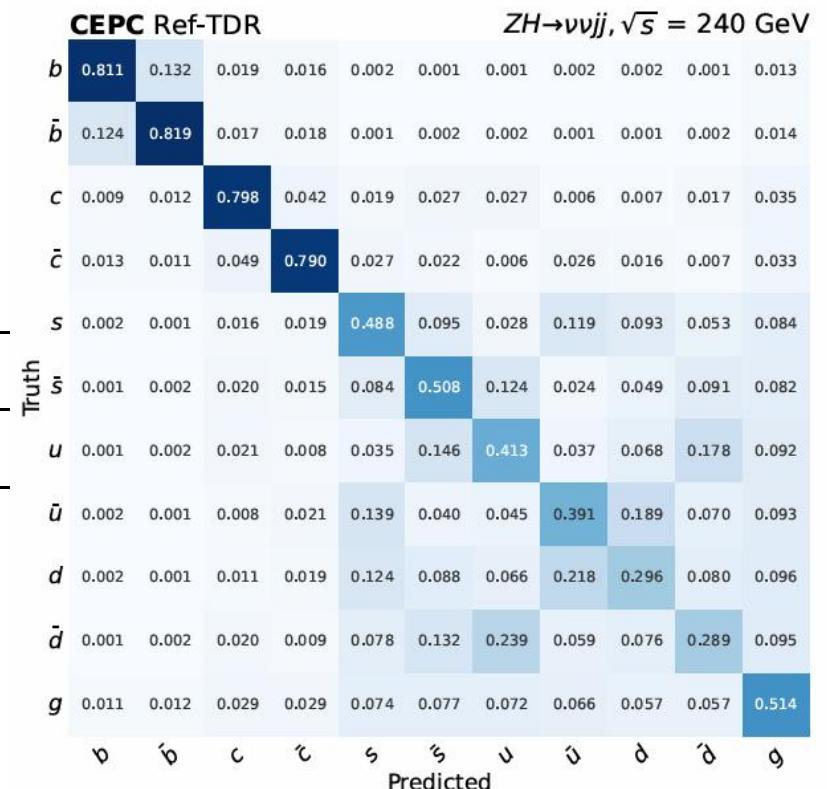


Z pole $ee \rightarrow s\bar{s}$ forward-backward asymmetry at CEPC

Shuo Han, Minqia Li

1 IHEP


Introduction

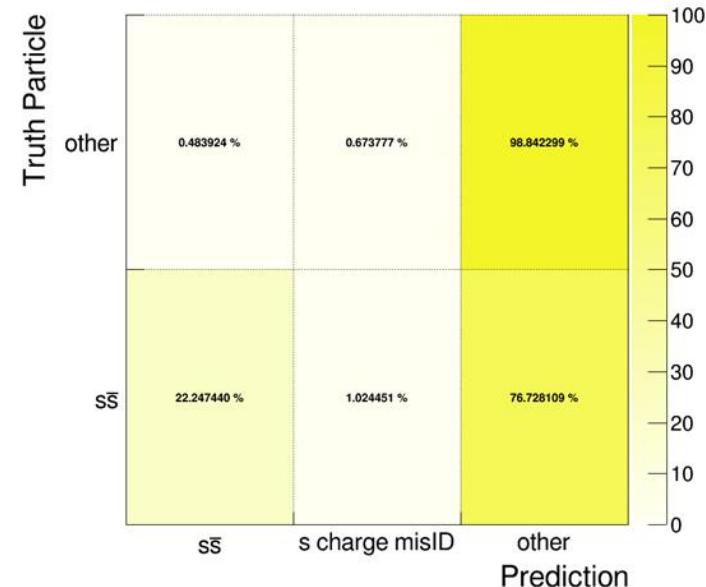
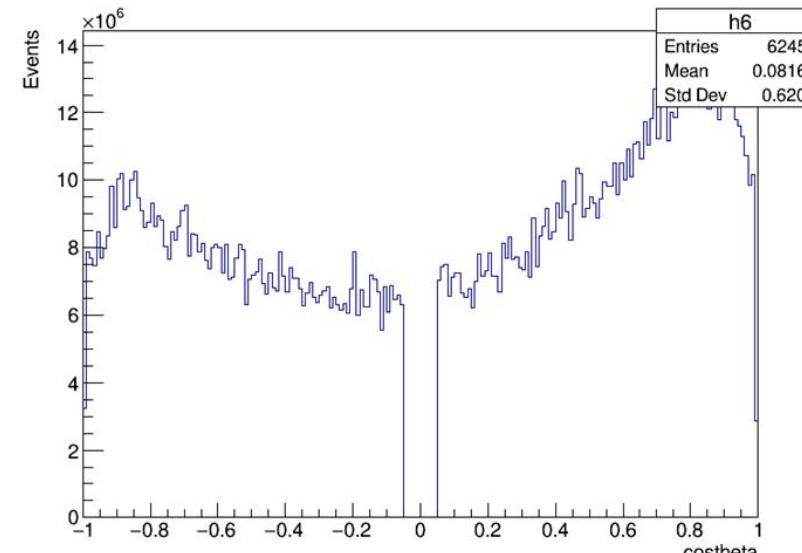
- According to TDR([arXiv:2510.05260](https://arxiv.org/abs/2510.05260)) of the CEPC, low-energy runs at Z pole will produce large numbers of Z boson.
- The electroweak mixing angle is extracted from the forward-backward asymmetry (AFB) of the $ee \rightarrow Z/\gamma^* \rightarrow ff$ events.
- The AFB is defined by the angle θ_{CM} between the final-state quark and the initial-state e^- in the dilepton center-of-mass frame.
- $ee \rightarrow ss$ forward-backward asymmetry is one of the Benchmark Physics studies that IDRC are interested in.

Sample Production

- $ee \rightarrow qq$ events are simulated with Whizard + Phythia at LO and Z pole energy, including bb , cc , ss , uu , dd final states.
- Process the sample with the detector ref-TDR version of the CEPC software.
- Jet Origin Identification([Phys.Rev.Lett. 132 \(2024\) 22, 221802](#)) are used in jet tagging.
 - Tagging model based on ParticleTransformer framework.
 - We can identify the jet by the highest score in the prediction.

Channel	$e^+e^- \rightarrow s\bar{s}$	$e^+e^- \rightarrow b\bar{b}$	$e^+e^- \rightarrow c\bar{c}$	$e^+e^- \rightarrow u\bar{u}$	$e^+e^- \rightarrow d\bar{d}$
Events	239250	199400	249500	199424	199000

Event Selection and Cutflow



- Jet-level selection based on JOI: select all the jets which pass s-tagging.
- $|\cos\theta| > 0.05$: reduce the forward and backward misidentification caused by reconstruction.

Channel	$e^+e^- \rightarrow s\bar{s}$	$e^+e^- \rightarrow b\bar{b}$	$e^+e^- \rightarrow c\bar{c}$	$e^+e^- \rightarrow u\bar{u}$	$e^+e^- \rightarrow d\bar{d}$
Cross Section	6.7 nb	6.7 nb	5.0 nb	5.0 nb	6.7 nb
Expected Events	6.24×10^9	6.24×10^9	4.64×10^9	4.64×10^9	6.24×10^9
Simulated Events	239250	199400	249500	199424	199000
Pass s-tagging	55678	3	341	4428	4543
$\cos\theta > 0.05$	53477	3	331	4257	4384

Calculation

- Forward and backward events are classified by the angle θ_{CM} of the s quark, which is reconstructed in the CM frame.
- Counting the number of forward and backward s quarks.
- Define the correction of charge misidentification.
 - AFB observed value contains three terms of contribution: s quark, \bar{s} quark and background.
 - The fractions and AFB values of those three terms can be calculated using s-tagging confusion matrix based on simulation data.

$$AFB_s = \frac{AFB_{obs} - AFB_{\bar{s}} \cdot \text{frac}_2 - AFB_{bkg} \cdot \text{frac}_3}{\text{frac}_1}$$

Calculation

- Getting the AFB(s): A likelihood function is defined to fit the number of forward and backward s quark.
 - Likelihood function of the distribution observed in 2-bin histogram should be expressed as the product of two Poisson terms.

$$\mathcal{L}(N, A) = \text{Pois}(n_F|\mu_F)\text{Pois}(n_B|\mu_B)$$

- But in AFB measurement, the function is equivalent to:

$$\text{Pois}(n_F|\mu_F)\text{Pois}(n_B|\mu_B) = \text{Pois}(n_{\text{tot}}|N)\text{Binom}(n_F|n_{\text{tot}}, p)$$

- The factor of systematic uncertainty will be a Gaussian term multiplied into the likelihood function:

$$\mathcal{L}(a_3, \theta, N) = \binom{n_{\text{tot}}}{n_F} p^{n_F} (1-p)^{n_B} \times \frac{N^{n_{\text{tot}}} e^{-N}}{n_{\text{tot}}!} \times \frac{1}{\sqrt{2\pi}} e^{-\theta^2/2}$$

- p is the probability that the event has forward s quark and it is constructed by AFB.

$$p = \frac{1 + A_{\text{mix}}}{2}$$

$$A_{\text{mix}} = f_1 A_1 + f_2 A_2 + f_3 A_{fb}^{\text{eff}}, \quad A_{fb}^{\text{eff}} = \tanh(a + \sigma_a \theta)$$

- The fitting was performed using RooFit.

Results and Uncertainties

- Result
 - $A_{FB}(s, \text{obs}) = 0.125507 \pm 0.000025$.
 - $A_{FB}(s) = 0.154499 \pm 0.000028$.
- Statistical uncertainties.
 - One-month run @ 1 ab^{-1} : 6.24×10^9 ss quark pairs (4×10^{10} Z bosons), 2.8×10^{-5} statistical uncertainty.
- Systematic Uncertainties.
 - Detector Resolution: Uncertainty estimated to be 3.7×10^{-5} .

	Before jet reco	No selection	After selections	Using PFO
Forward	3.60204×10^9	3.59390×10^9	9.21455×10^8	9.21523×10^8
Backward	2.63796×10^9	2.64610×10^9	7.16071×10^8	7.16003×10^8
A_{FB}^s or A_{FB}^{obs}	0.154499	0.151891	0.125424	0.125507
A_{FB}^s after phase space correction	N/A	N/A	0.154462	0.154499

Summary

- This is the first time that AFB(s) measurements have been conducted based on the TDR software and detailed systematic error analysis.
 - A workflow based on statistical method has been built.
 - Implement s-tagging using Jet Origin Identification(JOI).
- Plan for the Next Step
 - Consider more sources of systematic uncertainties in the estimation.
 - Add more information about s-quark on track/cluster level during the JOI model training in order to improve s-tagging performance.