

Search for the Higgs Boson Decaying into Tau Leptons (with CMS)

Jakob Salfeld-Nebgen (Deutsches Elektronen-Synchrotron) On behalf of CMS Collaboration

Physics In Collisions Conference 2013, Beijing

H->ττ is important channel

> Probes Higgs coupling to leptons

τ-lepton is heaviest lepton, currently the only sensitive leptonic decay mode

H->ττ is challenging channel

- > Low mass resolution (~15-20%)
- > Many final states

Moriond 2013 results are presented

> 4.9 fb⁻¹ at 7 TeV and 19.4 fb⁻¹ at 8 TeV recorded with CMS detector

Production & Decay Modes

e + mu

mu + mu

3.2%

6.2%

3.0%

- $-H \rightarrow \tau \tau \rightarrow e + \mu$
- $H \rightarrow \tau \tau \rightarrow \mu + \mu$
 - + Missing Transverse Energy

Topological selection

Event Categorization

> τ_hτ_h-channel: only 1-Jet and VBF Category (additional jet requirement in trigger)

Background estimation

> $M_{\tau\tau}$ reconstructed via svFit algorithm

$> m_{\tau\tau}$ used for signal extraction

Results

> Combined fit of $m_{\tau\tau}$ in all categories of all channels

> Excess observed, 2.85 σ at m_µ= 125.8 GeV, best fit: μ = 1.1 ± 0.4

> Close to probe evidence for Higgs coupling to leptons

Results

> Combined fit of $m_{\tau\tau}$ in all categories of all channels

> Excess observed, 2.85 σ at m_µ= 125.8 GeV, best fit: μ = 1.1 ± 0.4

> Close to probe evidence for Higgs coupling to leptons

Thanks a lot, stay tuned

BACKUP

Reconstruction of Di-Tau Mass

- > The measurable observables ($\vec{p}_{vis}^{1,2}$, \vec{E}_T^{miss}) underconstrain full di- τ invariant mass reconstruction
- > Build probability density function and use <u>Maximum Likelihood Method</u>

> Resolution of reconstructed $m_{\tau\tau}$ is 15 – 20 %

