Prospects of Higgs boson scenarios beyond the SM

Oscar Stål Stockholm University

Physics in Collision 2013 IHEP, Beijing, China, 2013-09-05

The LHC boson looks like the SM Higgs

ATLAS and CMS

- The new particle is seen in multiple production modes and decay channels, including those with vector bosons
 → Very likely related to electroweak symmetry breaking
- Its couplings are consistent with a SM Higgs boson (within current uncertainties)
- Impressive progress in the last year to determine properties in detail

The LHC boson looks like the SM Higgs

- The measured resonance mass is about 125 GeV (not predicted in SM, but in agreement with EW precision tests)
- Spin/CP-properties consistent with CP-even scalar (not discussed in more detail here)
- 125 GeV implies that the EW vacuum can be stable up to high scale, with metastability (long lifetime) possible up to 10¹⁶ GeV

But BSM arguments have not changed (much)

- Quadratic instability of scalar mass under quantum corrections (hierarchy/naturalness/fine-tuning problem)
- No SM candidate for dark matter of the universe
- Amount of CP-violation not consistent with baryogenesis
- No unification of the fundamental forces
- No way to incorporate gravity in a consistent theory
- -> Several of these points can be addressed by introducing new physics at the TeV scale, and often involves modification of the SM Higgs sector → BSM Higgs scenarios.

At the LHC we have not seen

- Signs of this new physics, as predicted by BSM theories:
- Jet resonances (strongly interacting particles, "black holes", ...)
- New dilepton resonances (Z', W')
- Supersymmetric particles / dark matter candidates
- Evidence for BSM physics in rare flavour (e.g. $B_s \rightarrow \mu^+\mu^-$)
- \rightarrow Constraints on BSM Higgs scenarios

NB: LHC non-observations are necessarily *not incompatible* with a SM-like Higgs in BSM scenarios, but challenges *naturalness arguments*

Direct constraints on BSM Higgs scenarios

The Higgs mass constrains only theories with mass prediction

ATLAS: $M_h = (125.5 \pm 0.2 \pm 0.6) \text{ GeV}$ CMS: $M_h = (125.3 \pm 0.4 \pm 0.5) \text{ GeV}$

Signal strengths constrains all BSM Higgs scenarios

Some BSM Higgs scenarios

- Higgsless scenarios

 → Strong WW scattering, ...
 Disfavored by Higgs discovery
- 2. Weakly interacting scenarios (fundamental scalar)
 → Minimial supersymmetry (MSSM)
 → Non-minimal supersymmetry
 → Simple extensions of the SM Higgs sector (2HDM, ...)
 → ...
- 3. Scenarios with strong interactions
 - \rightarrow Technicolor
 - \rightarrow Composite Higgs
 - →...

Some BSM Higgs scenarios

- Higgsless scenarios

 → Strong WW scattering, ...
 Disfavored by Higgs discovery
- 2. Weakly interacting scenarios (fundamental scalar)
 → Minimial supersymmetry (MSSM)
 → Non-minimal supersymmetry
 → Simple extensions of the SM Higgs sector (2HDM, ...)
 → ...
- 3. Scenarios with strong interactions
 - \rightarrow Technicolor
 - → Composite Higgs

 \rightarrow

Supersymmetry

• Unique extension of space-time symmetry to include spin $Q|\text{Fermion}\rangle = |\text{Boson}\rangle$ $Q|\text{Boson}\rangle = |\text{Fermion}\rangle$

Doubling the particle content of the SM

Complete framework to address many shortcomings of the SM

MSSM Higgs sector

- Minimal Supersymmetric Standard Model (MSSM)
 Minimal particle content (double SM) + Minimal interactions
- Two complex Higgs Doublets: $H_u = \begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}$ $H_d = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$

$$V = (m_{H_u}^2 + |\mu|^2)|H_u|^2 + (m_{H_d}^2 + |\mu|^2)|H_d|^2 + B\mu(H_u \cdot H_d + \text{h.c.}) + \frac{g^2 + g'^2}{8}(|H_u|^2 - |H_d|^2) + \frac{g^2}{2}|H_d^{\dagger}H_u|^2$$

SUSY: Quartic couplings in potential fixed by gauge couplings

8 scalar degrees of freedom, 5 physical Higgs bosons (SM: 4, 1)

 $\begin{array}{ll} \mbox{With CP conservation:} \ h, H & \mbox{(CP-even),} \ m_H > m_h \ , \mbox{mixing } \alpha \\ & A & \mbox{(CP-odd), and} \\ & H^{\pm} \ \ \mbox{charged Higgs} \end{array}$

MSSM Higgs masses

At tree-level, the MSSM Higgs sector is determined by two parameters:

> $M_A, \tan \beta$ <u>or</u> $M_{H^{\pm}}, \tan \beta$ $\tan \beta = \frac{v_u}{v_d}$ $v_u^2 + v_d^2 = v^2 \simeq (174 \,\text{GeV})^2$

Other Higgs masses are predictions:

 $M_{H^{\pm}}^2 = M_A^2 + M_W^2$

Tree-level mass of M_h too low compared to experiment!

Higgs masses beyond leading order

Radiative corrections to MSSM Higgs masses sizeable

$$M_h^2 = M_{h,\text{tree}}^2(M_A, \tan\beta) + \Delta M_h^2(M_{\text{SUSY}}, A_i, M_i, \ldots)$$

 Beyond leading order, the full SUSY spectrum enters determination of Higgs masses.

Soft SUSY-breaking parameters

 Scalar masses
 M_{SUSY} or M_{Q_3} , M_{L_3} , etc.
 Gaugino masses
 M_i ($i = 1 \dots 3$)

 Trilinear scalar couplings
 A_t, A_b, A_τ

To make predictions for Higgs phenomenology, we need either

 a theory which predicts these parameters at the weak scale
 some strategy to choose them directly

Fixing the soft-breaking parameters

Top-down

GUT-constrained models motivated by high-scale assumptions about how SUSY breaking is mediated

Ex: constrained MSSM (cMSSM, mSUGRA), GMSB, AMSB

Few input parameters, evolved from high- to low scale

$$m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sgn}\mu$$

Bottom-up

Low-energy benchmark scenarios to study phenomenologically interesting aspects of the MSSM Higgs sector without reference to 'higher' model, "Phenomenological MSSM (pMSSM)".

$$M_{\tilde{q}_i}, M_1, M_2, M_3, A_t, (A_b, A_\tau, \ldots), \mu, M_A, \tan\beta$$

Higgs mass in constrained SUSY models

 Minimal constrained (top-down) scenarios in general have difficulty to produce the required large Higgs mass

Arbey, Battaglia, Djouadi, Mahmoudi, Quevillon, [1112.3028]

 Additional model-building possible to remedy the situation, but minimal scenarios for GMSB and AMSB challenged

2013-09-05

Physics in Collision

Corrections to the lightest Higgs mass

- Public codes with known two-loop corrections implemented: FeynHiggs, SoftSusy, Suspect, Spheno, ...
 Typical difference in calculated M_h (theory unc.) of a few GeV
- Leading corrections depend strongly on top/stop sector:

$$M_h^2 \sim M_Z^2 + \frac{3m_t^4}{2\pi^2 v_u^2} \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right]$$
$$X_t = A_t - \mu \cot \beta \qquad \qquad M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$$

Basis for 'no mixing' and 'M_h-max' benchmark scenarios

 $\begin{array}{ll} X_t=0 & M_h \lesssim 120 \, {\rm GeV} \\ X_t^{\overline{\rm DR}}=\sqrt{6} M_S & M_h \lesssim 135 \, {\rm GeV} & {\sf Maximal \ value} \\ \end{array}$ Weak scale supersymmetry predicted a light Higgs boson!

Lower limits on MSSM parameters from Higgs mass

• Maximizing radiative corrections (for fixed $M_{SUSY} = 1 \text{ TeV}$) we can determine lower limits on tree-level parameters

Global analysis of low-energy MSSM

 Scan over pMSSM parameters, evaluate χ² including direct constraints, measured Higgs mass and rates, data from flavour physics and precision measurements

Parameter	Minimum	Maximum		
$M_A \; [\text{GeV}]$	90	1000		
aneta	1	60		
$\mu \; [{ m GeV}]$	200	4000		
$M_{\tilde{Q}_3}$ [GeV]	200	1500		
$M_{\tilde{U}_3}$ [GeV]	200	1500		
$M_{\tilde{l}_3}$ [GeV]	200	1500		
$A_f [{ m GeV}]$	$-3 M_{ ilde{Q}_3}$	$3 M_{ ilde{Q}_3}$		
$M_2 [\mathrm{GeV}]$	200	500		

Bechtle, Heinemeyer, Stal, Stefaniak, Weiglein, Zeune, [1211.1955]; Arbey, Battaglia, Mahmoudi; Cao, Heng, Yang, Zhang, Zhu; and many others...

Physics in Collision

LHC/Tevatron Higgs measurements

Low-Energy Observables

Values used in 2012 fit under revision for update

Observable	Experimental value	SM value
$BR(B \to X_s \gamma)$	$(3.43 \pm 0.21 \pm 0.07) \times 10^{-4}$	$(3.08 \pm 0.22) \times 10^{-4}$
$BR(B_s \to \mu^+ \mu^-)$	$(3.2^{+1.5}_{-1.2}) \times 10^{-9}$	$(3.55 \pm 0.38) \times 10^{-9}$
$BR(B_u \to \tau \nu_{\tau})$	$(1.66 \pm 0.33) \times 10^{-4}$	$(1.01 \pm 0.29) \times 10^{-4}$
δa_{μ}	$(30.2 \pm 9.0) \times 10^{-10}$	—
M_W	$(80.385 \pm 0.015) { m GeV}$	$(80.363 \pm 0.004) \text{ GeV}$

 This summer: New combined LHCb/CMS value

 $BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$

Higgs rates from Global MSSM analysis

20

Global MSSM analysis

Excluded by direct searches Allowed by direct searches

Black star: best fit point1 sigma allowed points2 sigma allowed region

- Exclusion by direct constraints and flavour physics probe the same parameter region at low M_A, high tan β.
- The low-M_A region is also disfavored by rates for lightest Higgs

Decoupling limit

Best MSSM fit to the combined data is in the decoupling limit

 $M_A \gg M_Z$ $\tan \beta \gg 1$ $M_H \sim M_{H^{\pm}} \sim M_A \gg M_Z$

 $M_h \sim 125 \,\mathrm{GeV}$

Couplings of the lightest MSSM Higgs boson approaches SM values

- "Typical" MSSM scenario is SM-like, but a good fit with deviations of O(20%-30%) on individual rates for the light Higgs are possible
- Phenomenology of heavy Higgs bosons (H/A/H⁺) can also be substantially different within the allowed region

Benchmark scenarios for MSSM Higgs searches

 Benchmark scenarios for MSSM Higgs searches was defined and used extensively at LEP/Tevatron

Carena, Heinemeyer, Wagner, Weiglein [hep-ph/991223], [hep-ph/0202167]

- Soft parameters given at the low scale, fixes radiative corrections to Higgs masses and mixing
- Higher-order SQCD corrections to productions cross sections and decay rates can be calculated
- Provides full SUSY spectrum, which is important in order to consider non-BSM processes, like cascade production and SUSY decays:

$$\tilde{\chi}_i \to H \tilde{\chi}_j \qquad H \to \tilde{\chi}_i \tilde{\chi}_j \qquad H \to hh$$

Benchmark scenarios for MSSM Higgs searches

- With the discovery of a "heavy" neutral Higgs boson, many of these original scenarios have become obsolete
 - -> Updated benchmark scenarios for MSSM Higgs searches

Carena, Heinemeyer, OS, Wagner, Weiglein [1302.7033]

- Strategy:
 - New scenarios should be compatible with Higgs discovery
 - SUSY at the "TeV"-scale, while respecting current experimental bounds: $m_{\tilde{q}_{1,2}} = 1500 \,\text{GeV}$ $m_{\tilde{g}} = 1500 \,\text{GeV}$
 - Capture different phenomenological aspects
 - Possible modification of properties of "SM" Higgs
 - Include opportunity for heavy CP-even Higgs as LHC signal
 - Indirect constraints ignored (benchmarks)

Overview of updated benchmark scenarios

- M_h -max *Maximizes lightest Higgs mass for given tan* β
- M_h -mod(+/-) *Maximize allowed region in* $M_{A'}$ tan β
- Light stop Minimze stop mass (to modify light h cross section)
- Light stau Minimize stau mass (to enhance h -> γ γ)
- Tauphobic Higgs Suppress light Higgs couplings to taus/bb
- Low-M_H Interpret LHC signal as heavy CP-even Higgs H

M_h-max and M_h-mod scenarios

- In the M_h -max scenario, only a narrow strip in tan β is compatible with the discovered Higgs mass
- In the M_h -mod scenario, the full range of tan β is available

Heavy Higgs Decays to SUSY particles

- In the M_h-mod scenario, the gauginos are rather light O(200 GeV)
- Heavy Higgs boson decays to gaugino pairs can be dominant

MSSM Enhancement of h -> γγ

- If the h -> γγ rate is enhanced, this can be accommodated in the MSSM in two ways:
 - Suppression of main decay modes to bb and $\tau\tau$
 - Additional contributions to $\ \Gamma(h
 ightarrow \gamma \gamma)$

Light stau scenario:

$$\delta \mathcal{A}_{h\gamma\gamma} / \mathcal{A}_{h\gamma\gamma}^{\rm SM} \simeq -\frac{2 m_{\tau}^2}{39 m_{\tilde{\tau}_1}^2 m_{\tilde{\tau}_2}^2} \left(m_{\tilde{\tau}_1}^2 + m_{\tilde{\tau}_2}^2 - X_{\tau}^2 \right),$$

$$X_{ au} \propto \mu \tan \beta \gg m_{ ilde{ au}}$$

(

Physics in Collision

Low-M_H scenario

Alternative scenario: *Heavy* CP-even Higgs boson H around 125 GeV.
 Lightest Higgs below LEP limit (reduced couplings to vector bosons)

Charged Higgs limits challenge Low-M_H scenario

In the low-M_H scenario, the MSSM is far from the decoupling limit

 $M_h < M_H \sim M_A \sim 125 \,\text{GeV} \qquad M_{H^{\pm}}^2 = M_A^2 + M_W^2$ $M_{H^{\pm}} < m_t \qquad t \to bH^+ \qquad \text{BR}(H^+ \to \tau^+ \nu_\tau) \simeq 1$

Beyond minimal supersymmetry

 Beyond minimal SUSY, there are other scenarios where M_h can be increased already at tree-level.
 Less need for large radiative corrections → improved fine-tuning.

Singlet extension (NMSSM):

$$W_{\text{NMSSM}} = W_F + \lambda \hat{H}_u \cdot \hat{H}_d \hat{S} + \frac{1}{3} \kappa \hat{S}^3,$$

$$V_{\text{soft}}^{\text{NMSSM}} = \tilde{m}_u^2 |H_u|^2 + \tilde{m}_d^2 |H_d|^2 + \tilde{m}_S^2 |S|^2 + (A_\lambda \lambda S H_u \cdot H_d + \frac{A_\kappa}{3} \kappa S^3 + h.c.)$$

• Seven physical Higgs states h_1, h_2, h_3 a_1, a_2 h^{\pm}

$$M_{h_1}^2 \le M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta M_{h_1}^2$$

Right Higgs mass without stop mixing

Improved NMSSM naturalness

• Quantitative measure of (technical) fine-tuning $\Delta_{m_h} = \max_{i}$

Hall, Pinner, Ruderman, [1112.2703]

 $\partial \ln m_h^2$

NMSSM modifications to Higgs phenomenology

- Singlet-doublet mixing can modify Higgs rates substantially *Prediction (before LHC discovery) that two-photon rate could be substantially higher than for SM* Ellwanger, [1012.1201] Cao, Heng, Yang, Zhu, [1103.0631]
- Two light Higgs bosons is still a viable possibility Lightest Higgs below LEP limit, with suppressed couplings to vector bosons, second lightest Higgs@125 GeV

Belanger, Ellwanger, Gunion, Jiang, Kraml, Schwarz, [1210.1976]

- Light singlet and invisible Higgs decays Current limit from ATLAS/CMS is ${
m BR}(h o {
m inv}) \lesssim 60\%$

ATLAS-CONF-2013-011, CMS-HIG-13-018

Relaxed bounds on heavy Higgses from direct searches / flavour Heavy Higgs bosons more 'decorrelated' from each other

Model-independent coupling fits

Deviations of SM couplings fitted in different parametrizations proposed by LHCXSWG \rightarrow Consistency test of SM

If a significant deviation is established, need to perform new modeldependent analysis for correct interpretation Physics in Collision 2013-09-05

Example: Composite Higgs

An alternative to SUSY, which removes the SM hierarchy problem, is if there is no fundamental scalar
Georgi, Kaplan

Giudice, Grojean, Pomarol, Rattazzi

- A composite Higgs could result as a pseudo-Goldstone Boson from a global symmetry in a strong sector, broken at a scale f_H > v Higgs mass generated at 1-loop → Low mass Higgs natural
 - ex) SO(5) -> SO(4) 1 Higgs doublet Minimal Composite Higgs Model (MCHM)

Agashe, Contino, Pomarol, [hep-ph/0412089]

SO(6) -> SO(5) SO(6) -> SO(4) x SO(2) 1 Higgs doublet + 1 singlet 2 Higgs doublets

Signatures of Higgs compositeness

- The composite Higgs is treated in an effective theory below the compositeness scale. Role of f_H similar to pion decay constant
- Modification of tree-level couplings in MCHM

$$\xi = \frac{v^2}{f_H^2}$$

$$\frac{g_{hWW}}{g_{hWW}^{\rm SM}} = \sqrt{1-\xi} \qquad \frac{g_{hff}}{g_{hff}^{\rm SM}} = \frac{1-(1+n)\xi}{\sqrt{1-\xi}} \qquad \begin{array}{l} n = 0, 1, 2, \dots \\ \\ \text{Depending on} \\ \\ \text{realization} \end{array}$$

 Loop-induced couplings to gluons and photons indirectly affected by modifications to top and W couplings

Model-independent coupling measurements

 Other models that can be tested in this framework: General two-Higgs-Doublet models (in decoupling limit), EW singlets, portal dark matter, Higgs-radion mixing...

Prospects without new physics

 5-10% precision on Higgs couplings at high-lumi LHC (3000 fb⁻¹), but worse for important top and bottom couplings

Combining with 500 GeV LC (500 fb⁻¹), precision is O(1%)

Conclusions

- The new particle discovered by ATLAS/CMS is similar to a SM Higgs boson (within uncertainties)
- Scenarios beyond the SM are constrained both by direct Higgs measurements, and from the non-observation of new physics
- Constrained (minimal) SUSY under pressure, more general MSSM analyses show best fit in the decoupling region
 -> Challenge for direct Higgs searches ...
 - ... but large experimental effects and new phenomena are not excluded: $\gamma\gamma$ modification, SUSY decays, H \rightarrow hh, ...
- Benchmark scenarios for MSSM Higgs searches have been updated after discovery to cover features of viable Higgs sector

Conclusions

- Non-minimal SUSY can increase the tree-level Higgs mass, which improves naturalness.
 - \rightarrow Higgs phenomenology can differ substantially from MSSM.
- More precise measurements of the Higgs couplings, perhaps also at a linear collider, provide a generic, indirect, probe of BSM Higgs scenarios (can be used to reject the SM)
- The best way to to prove that the Higgs sector is non-minimal is always to find additional Higgs states ⁽²⁾

Conclusions

- Non-minimal SUSY can increase the tree-level Higgs mass, which improves naturalness.
 - \rightarrow Higgs phenomenology can differ substantially from MSSM.
- More precise measurements of the Higgs couplings, perhaps also at a linear collider, provide a generic, indirect, probe of BSM Higgs scenarios (can be used to reject the SM)
- The best way to to prove that the Higgs sector is non-minimal is always to find additional Higgs states ⁽²⁾

We know that the SM *cannot* be complete

Backup

Higgs mass dependence on At

• M_h is increasing function of tree-level parameters $M_A, aneta$

 For a given SUSY mass scale M_{SUSY}, maximize the contributions to M_h from radiative corrections -> M_h-max scenario

$$X_t^{\rm OS} = 2M_{\rm SUSY}$$

- Conservative (scenario-independent) *lower* bounds on M_A , tan β

Lightest Higgs mass

Higher-order corrections are particularly important for M_h

$$M_h^2 = M_{h,\text{tree}}^2(M_A, \tan\beta) + \Delta M_h^2(M_{\text{SUSY}}, A_i, M_i, \ldots)$$

Long development to know these corrections very precisely

Dominant 1-loop corrections	1991	Okada, Yamaguchi, Yanagida Ellis, Ridolfi, Zwirner Haber, Hempfling
Complete 1-loop	1992-96	Brignole Chankowski, Rosiek, Pokorski Dabelstein Pierce, Bagger, Matchev, Chang
RGE-improved 1-loop	1995-96	Carena, Espinosa, Quiros, Wagner Haber, Hempfling, Hoang
Dominant 2-loop $\mathcal{O}(y_t^2 \alpha_s + y_b^2 \alpha_s + y_t^4 + y_b^4)$	1998-2002	Heinemeyer, Hollik, Weiglein Brignole, Degrassi, Slavich, Zwirner
Leading 3-loop $\mathcal{O}(y_t^2 \alpha_s^2)$	2010	Harlander, Kant, Mihaila, Steinhauser

MSSM Higgs couplings

Φ	$g_{\Phi ar{u} u}$	$g_{\Phi ar{d} d}$	$g_{\Phi VV}$	$g_{\Phi AZ}/g_{\Phi H^+W^-}$
h	$\cos lpha / \sin eta$	$-\sinlpha/\coseta$	$\sin(eta-lpha)$	$\propto \cos(eta-lpha)$
H	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	$\cos(eta-lpha)$	$\propto \sin(eta-lpha)$
A	${ m cot}eta$	aneta	0	$\propto 0/1$

Parameter values of updated MSSM scenarios

Parameter	$m_h^{ m max}$	$m_h^{ m mod+}$	$m_h^{\mathrm{mod}-}$	$light\ stop$	$light\ stau$	au-phobic	low - M_H
m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2
M_A	varied	varied	varied	varied	varied	varied	110
aneta	varied	varied	varied	varied	varied	varied	varied
$M_{ m SUSY}$	1000	1000	1000	500	1000	1500	1500
$M_{ ilde{l}_3}$	1000	1000	1000	1000	245 (250)	500	1000
$X_t^{\rm OS}/M_{ m SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45
$X_t^{\overline{ m MS}}/M_{ m SUSY}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9
A_t	Given by $A_t = X_t + \mu \cot \beta$						
A_b	$=A_t$	$= A_t$	$= A_t$	$=A_t$	$= A_t$	$= A_t$	$= A_t$
$A_{ au}$	$=A_t$	$= A_t$	$= A_t$	$= A_t$	0	$= A_t$	$= A_t$
μ	200	200	200	350	500(450)	2000	varied
M_1	Fixed by GUT relation to M_2						
M_2	200	200	200	350	200 (400)	200	200
$m_{ ilde{g}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500
$M_{ ilde{l}_{1,2}}$	500	500	500	500	500	500	500
$A_{f \neq t, b, \tau}$	0	0	0	0	0	0	0

Results of the fit

- Minimal χ^2 result:
 - Higgs signal strength and Higgs mass:

 $\chi^2/\nu = 33.9/40$ (SM: $\chi^2/\nu = 38.94/47$)

including LEO:

$$\chi^2/\nu = 38.6/45 \text{ (SM: } \chi^2/\nu = 53.27/52)$$

- SM and MSSM interpretations similar
- Including LEO, SM gets slightly worse

$$(g_{\mu}-2)$$
 differs by more than 3 σ

Overall good MSSM fit

```
* HiggsBounds 4.0.0.
Bechtle, Heinemeyer, Stål, Stefaniak, Weiglein
```

Naive calculation of degrees of freedom: $\nu = n_{\rm obs} - n_{\rm para}$

Summary of CMS SUSY Results* in SMS framework

SUSY 2013

