Hard Probes from RHIC to LHC energies

Michael P. McCumber

Los Alamos National Laboratory

Physics in Collision 2013 Beijing, China September 6th 2013

Heavy Ion Collisions

QCD Phase Diagram

Quark-gluon plasma above a few 10¹² K

Reachable by collider facilities

Critical point being sought

Lattice QCD Calculations

Energy density indicates partonic degrees of freedom open at $T_c\approx 170\ MeV$

Ideal gas of quarks and gluons at arbitrarily large T

(Data) Strongly-coupled fluid near $T_{\rm C}$

Space-Time Evolution

Kinetic Freeze Out (~10-15 fm/c) Chemical Freeze Out (~7 fm/c) *Hadron Gas* Phase Transition (~4 fm/c) *QGP* Thermalization (~0.6 fm/c)

Nuclear Crossing (~0.1 fm/c)

*values for RHIC at 200 GeV

Events with Large Multiplicity

Head-on Heavy Ion Events

Many particles produced Challenges for detectors Provides many analysis channels

for your reference a Higgs Candidate Event in p+p

many times fewer particles

Event Geometry Controls

Measured at large pseudorapidity

Tool: Glauber Monte Carlo simulation Simple geometric description of A+A Includes statistical fluctuations Number of Participating Nucleons, N_{part} ~ system size Number of Binary Scatterings, N_{coll} ~ hard process cross-section -10

Probes from Hard Scattering

"In science, one man's signal is another man's calibration reference." ~ paraphrasing Edward W. Ng

What are "Hard Probes" in Nucleus-Nucleus Collisions:

(1) Light particles resulting hard scattering between partons

(jets, jet fragments, prompt photons)

(2) Open heavy flavor

(charm and beauty quarks)

(3) Quarkonia

(Charmonium states: J/ψ , ψ ', χ_c ; Bottomonium mesons: Y(1S),Y(2S),Y(3S), χ_b)

What makes a good probe?

Form quickly with long lifetime with respect to the Quark Gluon Plasma Is not generated by the QGP phase

pQCD calculable production rates with experimental verification in p+p

"Initial state" Nuclear Modification from p+Pb and d+Au measurements Referred to as "cold nuclear matter" effects Rich field of study on nuclear structure (gluon saturation, initial state energy loss, etc)

Probes from Hard Scattering II

What physics are we after? (Hint: Hot Nuclear Matter Effects) Jets → energy loss via gluon radiation and collisions Heavy quarks → different mix of energy loss Quarkonia → thermal melting

"Final state" Nuclear Modification from Pb+Pb and Au+Au Compare p+p scaled up by N_{coll} to measurements in A+A Workhorse metric for energy loss studies:

$$R_{AA}\left(p_{T}\right) \equiv \left(\frac{d\sigma_{AA}}{dp_{T}}\right) \left/ \left(T_{AB}\frac{d\sigma_{pp}}{dp_{T}}\right) = \left(\frac{dn_{AA}}{dp_{T}}\right) \left/ \left(N_{coll}\frac{dn_{pp}}{dp_{T}}\right)\right| \right|$$

In the absence of cold nuclear matter effects:

R_{AA} = 1 indicates no effect from hot nuclear matterR_{AA} < 1 indicates suppression from hot nuclear matter

Jets and Jet Fragments

Classic evidence for "Jet Suppression"

Jets survive if they are near the surface and escape immediately

Momentum balance requires a recoil jet

Recoil jets have a long path through the QGP and are massively suppressed

Fast partons lose energy escaping the QGP

Inelastic gluon radiation Elastic collisions with medium components

What matters:

Fast parton **color charge** type (quark or gluon) **Path-length** through the QGP QGP macroscopic properties: **density, temperature**

QGP microscopic structure:

mean-free path, internal degrees of freedom

Nuclear Suppression

Very large momentum is not populated by thermal production, only hard scattering Simplest measure of energy loss is the **rate of energetic particles leaving the collision**

$$R_{AA}\left(p_{T}
ight) \\ = \left(rac{dn_{AA}}{dp_{T}}
ight) \left/ \left(N_{coll}rac{dn_{pp}}{dp_{T}}
ight)$$

Large suppression (R_{AA}~0.2) characteristic of energy loss in dense medium

No suppression in peripheral events, grazing events look like p+p **Suppression increases with centrality** as overlap region grows

Nuclear Suppression II

Suppression found in all high energy nucleus-nucleus collisions Larger at LHC energy than RHIC, both much larger than at SPS energy

Rises at larger momentum, long standing prediction of energy loss models

Eliminates complete thin surface bias of survivors

Important data for energy loss model construction

What about lower energies?

R_{cp}: ratio of centralities, useful when p+p reference not available uses relative N_{coll} to scale between centralities, $R_{cp} = 1 = no$ effect

Nuclear suppression increases with beam energy.

But large values found at lowest energy!

Partons within the beam can scatter as they penetrate a large nucleus before hard scattering

Additional kicks smear spectrum

Should be a small effect at high E

But how have we convinced ourselves we are measuring a hot nuclear matter effect?

Color-less Probes

Path-length Dependence

Large increase in suppression as path-length grow out-of-plane

Path-length Dependence II

N_{part}

"Jet Tomography" of the overlap region

Large anisotropies disappear in central events

R_{AA} alone = no discrimination

Parametrically large pathlength dependence needed in models

N_{part}

Reconstructed Jets

New channel with LHC lever arm

Extremely large energy losses on recoil jets in fully reconstructed jets at LHC

Jet Suppression

Copious jet production allows vast extension of kinematic range Nuclear suppression persists to extremely large momentum

Jet Internals

Energy loss widens and softens jet energy flow in Pb+Pb

Di-jets

Asymmetric jets are present in p+p but at a very small rate Pb+Pb shows fewer symmetric cases, many more asymmetric cases 20

Di-jet Balance Asymmetry II

Medium coupling strength

A view of the future:

Distributions encode rich information about the QGP

But also quasi-particle mass and other interesting properties

Will require systematic effort to separate these effects and pull out the QGP properties & compare with our collective models

Prompt Photon - Jet

Photons escape medium without energy loss Provides initial energy of the away-side parton at LO

Considered a **"golden channel"** for energy loss studies

Prompt Photon - Jet

Photons escape medium without energy loss Provides initial energy of the away-side parton at LO

Considered a **"golden channel"** for energy loss studies

Energy lost recovered at low momentum Characteristically similar to model predictions No jet algorithm needed

Open Heavy Flavor

Why Charm and Beauty Quarks?

rapid formation time exposes probe to full medium evolution: ~1/M **differently sensitive** to cold nuclear matter effects impacting quarkonia

How is energy loss of heavy flavor different?

"Dead cone effect" on gluon radiation (proposed Dokshitzer & Kharzeev, 2001)

Cold Nuclear Matter Effects

Gluon fusion process dominates heavy quark production

 $g+g \to q+\bar{q}+X$

CNM effects include:

(1) Gluon shadowing

penetration into the front face of the nucleus modifies the gluons available for fusion

(2) Gluon saturation

at extremely low x, gluons should fuse to maintain unity in the PDF, not known where this happens!

(3) Nuclear absorption (quarkonia only)

the bound-state or its predecessor state is "broken up" by reactions with the back-side of the nucleus

nuclear gluon PDF / proton

Important at lower energy (formation time)

Heavy Flavor Suppression

Early results from single heavy flavor leptons

Mixes charm and bottom

Large suppression at high p_T shows significant energy loss

As expected: π⁰ R_{AA} < c+b R_{AA}

Not obvious if: c R_{AA} < b R_{AA}

Cold Nuclear Matter Baseline

CNM effects are important for open heavy flavor at RHIC! Important for Cu+Cu interpretation

Increases the energy loss needed reproduce the heavy flavor spectrum

D Meson Reconstruction

Better to fully reconstruct the decay kinematics and **separate charm** from bottom example: $D^0 \rightarrow K^- + \pi^+$

Large charm suppression, comparable with light partons No significant CNM effect in p+Pb collisions at the LHC Important input for quarkonia studies

D Meson Reconstruction

Better to fully reconstruct the decay kinematics and **separate charm** from bottom example: $D^0 \rightarrow K^- + \pi^+$

Large charm suppression, comparable with light partons No significant CNM effect in p+Pb collisions at the LHC Important input for quarkonia studies

$B \rightarrow J/\psi$ Suppression

Bottom quark last through the medium expansion, hadronization, and decays in vacuum

Long flight time of beauty hadron = Off vertex decay to J/ψ

Separate into prompt & nonprompt J/ ψ with inner tracking

$c R_{AA} < b R_{AA}$

Difference typically characteristic of model expectations

Quarkonia Suppression

Early proposed "smoking gun" channel for Quark-Gluon Plasma

- Screening from medium charges dissolves bound state hadrons
- Set of remaining states reveal peak temperature in the medium

The idealized picture breaks down rather quickly: Feed-down Contamination

lower mass states produced during decay

Cold Nuclear Matter Effects

initial state energy loss, gluon saturation, nuclear breakup dependencies on centrality, pseudorapidity, momentum

Recombination at Hadronization

isolated heavy quarks bind after QGP phase worse at lower mass and at higher beam energy

Our challenge:

Gather diverse data sets and multiple discriminants to isolate and characterize these effects

Opinion:

puzzle pieces about to come together

Bottomonium

Least sensitive states to feed-down and recombination

Large suppression even for most robust state, Y(1S) Less robust state, Y(2S), even more suppressed Y(3S) disappears completely

Really so simple? but what about CNM effects?

LHC p+Pb Y Reference

Upsilon production does contain cold nuclear modifications

Implied modifications at mid-rapidity are not negligible, O(20%)

Initial state energy loss is needed, saturation effects may be present

Y(nS) at RHIC

Upsilon family suppressed at RHIC

Result is consistent with complete melting of 2S+3S states

Hints that there must be at least some suppression of the 1S at RHIC, but unlikely as much as at the LHC

J/ψ Suppression

Bountiful charmonium at the LHC but also at RHIC

Also shows a large suppression in central events

Influenced by more complicating factors, namely recombination

Energy Dependence

Large suppression in J/psi from 39 GeV - 2.76 TeV Competition between melting and recombination CNM matter effects will also vary across this range

ψ' in Pb+Pb

ψ' in d+Au

CNM Surprise

ψ' completely
 suppressed in central
 d+Au at RHIC at
 mid-rapidity

Larger diameter may result in larger breakup cross-section with "back-side" of the nucleus

A+A ψ' from regeneration almost exclusively

Sequential Melting

Take-Home Summary

Jets

Heavy Flavor

Quarkonia

Large energy lost but recovered at large angles and small momentum

Evidence charm is suppressed more than bottom

谢谢!!!

Thank you!!!

Influence of binding energy measured

Aside: Charm and Bottom Flow

Large anisotropy at low pT driven by soft physics: hydrodynamic expansion

Charm is substantially thermalized and flows like light quarks

Langevin:

$$\frac{d\vec{p}}{dt} = -\eta_D\left(p\right)\vec{p} + \vec{\xi}$$

Diffusion rate related to the viscosity of the fluid

Di-jet Angular Correlations

Are the modified jets still typically back-to-back? No change in recoil direction at large momentum Energy loss is the result of a many small scatterings with the medium

Centrality Dependence

Similar rates of shadowing and Cronin

 ψ ' actually measured in central A+A events will provide a good way to isolate and understand recombination rates

Quarkonia Flow

Charm recombination important for J/psi production

Charm and Bottom Results II

Quarkonia Results I

Quarkonia II

Heavy Ion Collisions

