Higgs Searches Beyond the Standard Model

Rainer Mankel Deutsches Elektronen-Synchrotron (DESY) 汉堡 on behalf of the ATLAS, CDF, CMS and D0 Collaborations

PIC2013 Conference, IHEP Beijing, 3-8 Sept 2013

CMS PAS H

κ_ν, κ_a, BR

BSM?

02

⊿ P

2

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

CMS Preliminary \sqrt{s} = 7 TeV, L \leq 5.1 fb⁻¹ \sqrt{s} = 8 TeV, L \leq 19.6 fb⁻¹

- Most relevant questions after discovery of a Higgs boson at ~125 GeV: • properties of this Higgs boson, couplings
 - etc → see talks by James, Romain & Elisabetta
 - <u>structure</u> of the Higgs sector
- At the level of current measurements, the observed state is compatible with the Standard Model Higgs
 - but SM features quadratically divergent self-energy corrections at high energies (Hierarchy problem)
 - many other open questions: dark matter, naturalness ("µ problem"), CP violation in early universe
- Even with SM-like tree-level production mechanisms, there is still plenty of room for non-SM decays of the H(125)
 - BR_{BSM}<52% at 95% CL

Searching additional Higgs states is potentially the fastest way of answering these questions

04

0.6

0.8

BR_{BSM}

CMS PAS HIG-13-005

Observed

--- Exp. for SM H

2HDM Models

MSSM

two complex scalar

five physical Higgs

doublet fields

bosons

- more general formulation of model with two scalar fields
 - MSSM is a type-II 2HDM
- CP violation and FCNC possible

 two complex scalar doublet fields + additional singlet

 seven physical Higgs states Additional SM-like Higgs

high mass searches

Fermiophobic

• not coupling to fermions

Hidden Sector

- invisible Higgs
- dark SUSY

Many others

•••

Standard Model

- single complex scalar doublet field
- one physical Higgs state (H)

NMSSM

The Experiments

R. Mankel; Higgs Searches Beyond the SM

MSSM Higgs Bosons

- MSSM features two complex Higgs doublets
- → Five physical Higgs bosons

- two charged: H[±]
- At tree level, MSSM Higgs sector is governed by two parameters:
 - m_A
 - tan β (ratio of vacuum expectation values of the two Higgs doublets)
- Beyond tree level, additional parameters enter via radiative corrections
 - → benchmark scenarios to compare different measurements (by default "m_h^{max}")

- The mass of the CP-odd Higgs boson A is usually ~degenerate with one of the CP-even bosons
 - $m_A \approx m_H \text{ for } m_A \gg m_h^{max}$
 - $m_A \approx m_h \text{ for } m_A \ll m_h^{max}$
- With the exception of the µµ channel, this degeneracy cannot be resolved within the mass resolution
 - visible cross section effectively doubles
- Together with the effect of the Higgs coupling to b quarks, visible cross sections in b-associated production are typically enhanced by a factor of ≈ 2 tan² β

→

MSSM Higgs Production & Decay

 $\tan \beta = 5$ [qd] (X + $\sigma(pp \rightarrow \phi + X) [pb]$ LHC HIGGS XS WG 201: √s= 8 TeV √s= 8 TeV 10² h Η 10 10 a(pp 10 10 $gg \rightarrow A$ $aa \rightarrow A$ $gg \rightarrow h/H$ $gg \rightarrow h/H$ 10⁻² 10 bbA bbA ---- bbh/H ---- bbh/H 10⁻³ 10^{-3} $\tan\beta = 30$ $\tan\beta = 5$ mhmax scenario mhmax scenario 10⁻⁴ 10⁻⁴ 10^{3} 10³ 10^{2} 10^{2} M₆ [GeV] M₆ [GeV] Dominant decays of the neutral MSSM Higgs boson 10 $\tan\beta = 10$ (H) 10⁻² Unlike the SM, these decay modes may play important rôle 10-3 $BR(h \rightarrow Z\gamma)$ BR(h -> gg) 10 100 200 300 400 500 600 M_A[GeV]

Strong enhancement

of cross section with

in particular due to

associated production

increasing tan β

(at large tan β):

bb (~ 90%)

ττ (~ 10%)

even at high masses

M. Carena et al.; arXiv:1302.7033

- Evaluate impact of H(125) in m_h^{mod±} scenarios
 - re-tuned version of m_h^{max} scenario, suits better the observed Higgs mass
 - theoretical uncertainties taken into account

- The H(125) observation does not exclude a heavy MSSM Higgs in wide range of tan β
- At large M_A (>>m_Z) the "light" MSSM Higgs boson (h) becomes standard model-like (decoupling limit) → direct searches are essential
- Both SM and MSSM fit the current set of H(125) measurements ~equally well

P. Bechtle et al., arXiv:1211.1955

Production mechanisms & event categories

- Good compromise between relatively large BR
 and manageable backgrounds
- To-date, analyses cover five of six possible ττ decay patterns
 - $e+\mu$, e+had, $\mu+had$, had+had (ATLAS), $\mu+\mu$ (CMS)
- Mass of τ pair is reconstructed from visible τ decay products and missing E_{τ}
 - CMS: likelihood technique
 - ATLAS: "Missing Mass Calculator" *
- Main backgrounds (in broad strokes may differ from channel to channel):
 - **Ζ→**ττ:
 - embedding technique: take Z→μμ from data, replace μ's by simulated τ decays
 - Z→ee / μμ
 - $t\bar{t}$ and di-boson
 - QCD multijet, W+jets:

* A. Elagin et al., Nucl.Instrum.Meth. A654 (2011) 481-489

CMS PAS HIG-12-050

ATLAS JHEP 1302 (2013) 095

- Background compositions differ significantly across the various decay channels
- All distributions well described by background hypothesis

- → Very low tan β upper limits (tan β < 5 for m_A<250 GeV !)
 - touching the LEP constraint at low m_A
- → Addition of 8 TeV data → extension of mass scale up to 800 GeV (CMS)

- Low BR, but also excellent mass resolution (close to Γ_{Φ}) and manageable BG
- Dominant backgrounds: Drell-Yan, bbZ⁰, top
- -> Limits reach to σ * BR in the 20-100 fb range
 - → significant constraints in (m_A , tan β) plane

 $tan\beta$

R. Mankel; Higgs Searches Beyond the SM

- Largest expected BR, but very difficult channel
 - huge background from multi-jet QCD
- Search for associated production with at least one additional b quark
 - → enhancement if tan β > 1
- Signature: ≥ three b-jets + X in the final state
 - → one of the most challenging triggers

CDF+D0 Phys.Rev. D86 (2012) 091101

- Search for MSSM Higgs boson decaying to b quarks, and produced with at least one additional b jet
- Background treatment:
 - CDF: mass + global b-tag templates, derived from double btag sample with btag efficiency weights. Combination fitted to data.
 - D0: fractional contributions of multi-jet processes determined by fitting p_{T} distributions from simulation to the data.
- No signal seen over background expectation >
 - modest excesses of ~2.8 σ (CDF) and ~2.5 σ (D0)

bbB

Best Fit (with signal template)

2250 🗗

R. Mankel; Higgs Searches Beyond the SM

- CMS analysis searches in all-hadronic (shown) and semi-leptonic signatures (see backup)
- All-hadronic analyses inspired by CDF method
- Background-only fit with shapes determined from double-btag sample gives excellent agreement with triplebtag data
- No signal observed
- First measurement of this kind at the LHC

CMS Phys.Lett. B 722 (2013) 207

- For comparison with Tevatron, CMS results also given for μ = -200 GeV (right)
- → Already with 2011 data, CMS has significantly higher sensitivity
- → CMS does not confirm ~ 2σ -level excesses seen by CDF + D0

g

 \overline{b}^*

ð

ATLAS CONF-2013-090

 H^+

- $H^+ \rightarrow \tau v_{\tau}$ dominant decay mode for tan β >5 and m(H⁺)<m_t
- Main production modes:
 - top decays (m(H⁺)<m_t)

top-associated production (m(H⁺)>m_t)

^g 00000

00000

 \overline{b}

Events / 20 GeV ATLAS Simulation Preliminary Di-boson 2000 Single top N+iet: H⁺(130) [arbitrary normalization] 1500 H⁺(250) [arbitrary normalization] H⁺(500) [arbitrary normalization] 1000 L dt =19.5 fb 500 100 200 300 400 500 m_⊤ [GeV]

- Fully hadronic final states (ATLAS):
 - veto on other leptons
 - 3-4 jets (≥1 b-tagged)
 - large MET
- Discriminating variable m_T (= transverse invariant mass of τ + MET)
- Backgrounds: $t\bar{t}$, single-top, W/Z+jets, di-bosons, QCD

$H^+ \rightarrow \tau v_{\tau}$ Search (cont'd)

ATLAS CONF-2013-090

- Full 2012 dataset used
- Mass ranges 90-160, 180-600 GeV covered
- No evidence for H⁺ found
- At low m(H⁺), large parts of MSSM parameter space excluded

- For tan $\beta < 1$, $H^{\pm} \rightarrow c\bar{s}$ becomes the dominant decay mode (~70% for $m_{H^{\pm}} \sim 110$ GeV)
- First investigation of this process by CDF and D0 at the Tevatron collider
 - no indication for H⁺ signal
 - → upper limits on B(t→H⁺ b) around 10-30%, assuming B(H⁺→ $c\bar{s}$)=100%
- In the mean time, has been measured by ATLAS at the LHC

CDF, Phys. Rev. Lett. 103 (2009) 101803.

Same topology as $t\bar{t}$ decays in lepton + jets channel

- Search for second peak in the di-jet mass distribution
- Event selection:
 - isolated lepton, 4 jets (two with b-tag)
 - MET
- Kinematic fit for mass reconstruction is essential
- Significant improvement of separation between standard ttbar background and signal (σ_m~12 GeV)

Light H[±] Search in cs (cont'd)

95% (

Light H[±] Search in cs (cont'd)

ATLAS Collab., Eur. Phys. J. C 73 (2013) 2465.

- Main backgrounds:
 - SM $t\bar{t}$
 - QCD multi-jet (data-driven, shape from semi-isolated lepton control region)
 - W/Z+jets, single top
- Observed mass spectrum well described by **→** background estimation
 - no indication for H⁺ signal
- Observed limits between 1-5 % ->
- Most stringent results to date in $c\bar{s}$ channel **→**

Two Higgs Doublet Model (2HDM)

Generic 2HDM Higgs Search

- Phenomenological approach: simple extension of SM Higgs sector by second complex Higgs doublet
 - five Higgs bosons: h, H, A, H[±]
 - can accommodate CP violation (as opposed to MSSM at tree level)
 → possible explanation of baryon asymmetry in universe?
- Examples of 2HDM models with natural flavor conservation:
 - Type I: all quarks couple only to one Higgs doublet
 - Type-II: up-type quarks (Q=+2/3) couple to one, down-type quarks (Q=-1/3) couple to the other Higgs doublet
 - tan β : ratio of VEVs. α : scalar mixing angle
- ATLAS analysis: h / H \rightarrow WW^(*) \rightarrow evµv, assume m_h=125 GeV
 - pseudoscalar A does not decay to W pairs
 - exactly 2 leptons of opposite charge, E_{T.rel}^{miss}
 - gluon-gluon fusion (GGF) selection: zero jets
 - vector-boson fusion (VBF) selection: two jets
 - neural network combines kinematic variables to enhance S/B
 - trained for each mass point

ATLAS CONF-2013-027

- H(125) treated as "background"
- → No indication of a signal (would appear at large NN output)

ATLAS CONF-2013-027

tan $\beta = 1$ tan β =20 $\cos(\alpha)$ $\cos(\alpha)$ ATLAS Preliminary ATLAS Preliminary dt = 13 fb⁻¹ /s=8 TeV L dt = 13 fb⁻¹ /s=8 TeV Type-I 0.5 0.5 HQM Type-I tanβ=1 2HDM Type-I tanβ=20 $H \rightarrow WW \rightarrow ev\mu v$ H→WW→evµv -0.5 -0.5 ---- Exp. 95% CL ---- Exp. 99% CL ---- Obs. 95% CL ---- Exp. 95% CL ---- Exp. 99% CL ---- Obs. 95% CL Obs. 99% CL Obs. 99% CL 200 250 300 200 300 150 150 250 m_µ [GeV] m_⊣ [GeV] 1 cos(α) 0.5 $\cos(\alpha)$ ATLAS Preliminary ATLAS Preliminary Type-II .dt = 13 fb⁻¹ /s=8 TeV L dt = 13 fb⁻¹ /s=8 TeV 2HQM Type-II tanβ=1 0.5 2HDM Type-II tanβ=20 H→WW→evµv H→WW→evµv Exp. 95% CL -0.5 - Exp. 99% CL -0.5 Obs. 95% CL ---- Exp. 95% CL ---- Exp. 99% CL Obs. 99% CL Obs. 95% CL Obs. 99% Cl 150 200 250 300 200 150 250 300 m_µ [GeV] m_⊢ [GeV]

ATLAS CONF-2013-027

2HDM Higgs Search: Results

- Interpretation: exclusion contours in the cos α - m_H plane for different values of tan β
 - different results for Type-I and Type-II 2HDM models
- For low masses (< 200 GeV), significant parts of the cos α range are excluded

2HDM Search in Cascade Decays

- Search for a heavy scalar H⁰ with a cascade decay:
 - $H^0 \rightarrow H^+W^- \rightarrow (h^0W^+) W^- \rightarrow (b\bar{b}) W^+W^$
 - one W decaying leptonically
 - final state similar to ttbar events
 - 1 lepton, ≥4 jets, ≥1 b-tags, MET>20 GeV
- Dominant backgrounds:
 - $t\bar{t}$ production modeled by MC (PYTHIA)
 - W+jets background modeled with ALPGEN/PYTHIA
- Reconstruct 1 W from lepton+MET and the other from jet pair with matching mass
 - search signal in m_{bb}
- Cross section upper limits obtained scanning the space of H^{\pm} and H^{0} masses
 - assume B(H⁰ \rightarrow H⁺W⁻)=B(H⁺ \rightarrow h⁰W⁺)=100%
 - limits range between 1.3-0.015 pb \rightarrow
 - first measurement of this kind -

NMSSM Higgs Bosons

- Two complex Higgs doublets + additional scalar field
- Physical states are mixtures: h_1 , h_2 , h_3 , a_1 , a_2 , h^{\pm}

- Requires less fine tuning for Higgs mass, solves "μ problem" of MSSM
- → Rich phenomenology

CP-even CP-odd

h_{1,2}→aa→(μμ) (μμ) Search

- Search for a non-standard Higgs decay into two very light bosons, resulting in two boosted pairs of muons
- NMSSM interpretation: $h_{1,2} \rightarrow a_1 a_1 \rightarrow (\mu \mu) (\mu \mu)$
 - either h₁ or h₂ could correspond to observed H(125)
 - a_1 is a new light CP-odd Higgs boson (m<2m_{τ})
- Dark SUSY interpretation: $h \rightarrow 2 n_1 \rightarrow 2 n_D + 2 \gamma_D \rightarrow 2 n_D + (\mu\mu) (\mu\mu)$
 - models motivated by excesses in positron spectra observed by satellite experiments
 - cold dark matter with a mass scale of ~1 TeV
 - n_1 is lightest visible neutralino, n_D is light dark fermion, and γ_D light (massive) dark photon that weakly couples to SM particles

CMS PAS HIG-13-010

- Search for events with two isolated, boosted muon pairs
 - consider 0.25 < m_a < 3.55 GeV and m_h > 86 GeV
- Signal region: $m_{\mu\mu1} \approx m_{\mu\mu2}$
- Main backgrounds:
 - direct double-J/ ψ production
 - $b\bar{b}$ production with subsequent di-muon decays (double-semileptonic or resonances)

- $b\overline{b}$ background from bb-enriched control sample, double-J/ ψ production from PYTHIA
- → 8 events observed in off-diagonal sideband
- → After unblinding, only 1 event is observed in the diagonal signal region
 - → expected background: 3.8 ± 2.1 events

CMS PAS HIG-13-010

6F

90

ے ↑

σ(pp

Results are interpreted in context of NMSSM and dark-SUSY benchmark models

and $B(\gamma_{D} \rightarrow 2\mu) = 45\%$

Dark SUSY

110

100

120

130

140

 m_h [GeV/ c^2]

150

NMSSM: upper limits vs m_{h1} and m_{a1}

↑

→ h 1,2

σ(pp

0.5

85

 $B(h_1 \rightarrow 2a_1) = 0.8\%$ and B(a $\rightarrow 2\mu$) = 7.7%

100 105 110 115 120 125

signal efficiencies depend on assumptions for either m_a or m_h

 m_{h2} unrestricted \rightarrow conservative assumption on efficiency

 m_{h} [GeV/ c^2]

NMSSM

95

Best experimental limits in this signature >

→

- If very light NMSSM CP-odd Higgs bosons exist, they might be observed in the decay H(125) → a a → (γγ)(γγ)
- Here: assume m_a=100-400 MeV
 - di-photon system would be highly boosted. Potential background for SM H $\rightarrow \gamma\gamma$ analysis
- Analysis similar to SM $H \rightarrow \gamma \gamma$
 - additional selection based on shower shape variables & calorimetric isolation
- No signal observed
 - upper limits of $\sigma^*BR(H \rightarrow aa \rightarrow (\gamma\gamma)(\gamma\gamma))$ in 0.1-0.2 pb range

ATLAS CONF-2012-079

R. Mankel; Higgs Searches Beyond the SM

Exotic Higgs Bosons

ATLAS-CONF-2013-011 After just Z selection: After final selection (8 TeV shown): Events / 5 GeV Preliminary Vs = 8 TeV 50 ATLAS Data L dt = 13.0 fb⁻¹ Events / 30 GeV 107 azimuthal $ZH \rightarrow II+invisible$ $L = 13.0 \, \text{fb}^{-1}$ ATLAS Preliminary s=8 TeV Data 10⁶ separation WZ 40 Z 10⁵ Top WW MET ZZ Other BG WZ 10⁴ balancing 77 30 Signal (SM ZH, m_=125 GeV) $SM H \rightarrow ZZ^{(*)}, H \rightarrow WW^{(*)}$ 10^{3} Signal (SM ZH, m = 125 GeV veto on 10² 20 additional 10 jets 10 Data / MC 0.8 0 50 100 150 200 250 300 350 400 450 50 100 150 200 250 300 E_T^{miss} [GeV] E^{miss} [GeV]

If the Higgs would decay with a significant fraction to invisible particles, this might be detectable in associated production with a Z boson

Invisible Higgs

- look for events with $Z \rightarrow I^+I^-$ plus missing E_{τ} , and little else
- Main backgrounds:
 - $ZZ \rightarrow ||_{VV}, ZW \rightarrow ||_{V}, WW \rightarrow |_{V}|_{V}$
 - Z+jets

35

Observed

V+jets

tt+DY+VV

Signal 100%BR

CMS Preliminary

TeV L = 19.6 fb

Events / 20 GeV

10⁴

10³

10²

10

10-2

10

10

W/Z

CMS Preliminary

 $\sqrt{s} = 8 \text{ TeV} \text{ L} = 19.6 \text{ fb}^{-1}$

CMS PAS HIG-13-013

 $\sigma \times BF(H \rightarrow inv) [pb]$

1.5

Invisible Higgs can also be searched in VBF

cross section higher than in ZH production

large efforts to reduce QCD background

CMS Preliminary

√s = 8 TeV L = 19.6 fb⁻¹

special VBF+MET triggers

Observed

V+iets

tt+DY+VV

Signal 100%BR

Events / 100 GeV

 10^{4}

10³

 10^{2}

10⊧

10 10-

10

Branc

95% CL limits

Observed limit

Expected limit

σ_{VBF} (SM)

Expected limit (1 o)

Expected limit (2 o)

350

400 m_H [GeV]

CDF+DZero arXiv:1303.6346

- If a Higgs boson does not couple to fermions
 - production via gluon-gluon fusion impossible
 - standard production channel is vector boson fusion (VBF) or vector-boson associated production (VH)
 - BRs for di-boson modes enhanced
- Analysis largely similar to SM analysis
- → Fermio-phobic Higgs excluded within m_H= 100-147 GeV

ATLAS CONF-2012-013

CMS PAS HIG-12-013

R. Mankel; Higgs Searches Beyond the SM

- Observation of SM-like features of the H(125) state does not imply that the Higgs sector must have SM structure
 - best way of clarification: direct search for additional Higgs signatures
- A broad attack is launched to clarify whether the Higgs sector reaches beyond the Standard Model.
 - MSSM: at low m_A (<140 GeV) LHC & LEP limits close. Large m_A and tan β still possible. Improved constraints for H[±]
 - **2HDM**: constraints in (cos α , tan β) space. First searches in cascade decays
 - NMSSM: wide open range of possibilities.
 - only few channels/signatures addressed so far.
 - already relatively stringent limits for light CP-odd Higgs bosons
 - additional analyses are underway.
 - also Dark SUSY interpretation possible
 - Invisible Higgs: first limits obtained in associated production and VBF. Still large BR(H→inv) possible.
 - Fermio-phobic Higgs excluded within 100-147 GeV

- Non-SM Higgs searches have just scratched the surface
 - many LHC BSM analyses still need to be updated with full 8 TeV statistics
 - many additional new analyses underway
 - 13 TeV running will further extend the reach towards higher masses
- A rich research program for the future

A sublime field for Hadron Colliders as discovery machines at the energy frontier!

Backup

CMS PAS HIG-13-002 CMS PAS HIG-13-024 10 = 95% CL limit on σ/σ_{SM} CMS Preliminary 2012 5.3,19.6 fb⁻¹ (s = 7,8 TeV Limit 95% CL on σ/σ_{SM} Observed CMS Preliminary Expected Expected $H \rightarrow ZZ \rightarrow 4L + 2I2\tau -$ Expected ± 68% CL s = 7 TeV, L = 5.1 fb⁻¹ Expected ± 1σ √5 = 8 TeV, L = 19.6 fb⁻¹ Expected ± 95% CL Expected ± 2σ Observed 3 2I + 2v10 $41 + 21 2\tau$ 100 200 300 400 1000 0 500 m_H [GeV] 300 400 m_H [GeV/c²]

ATLAS CONF-2013-013

Additional SM-like $H \rightarrow ZZ$ excluded up to 832 GeV

New!

600

MSSM and the 125 GeV Boson Observation (cont'd)

- Overall fits of the available data find
 - "light Higgs" assumption: no real upper limit for m_A , and large values of tan β are possible
 - for m_A>>m_Z, MSSM Higgs sector reproduces the SM ("decoupling limit")
 - "heavy Higgs" assumption: all five MSSM Higgs bosons must be light
- Message for experiments: very important to search at large Higgs masses in channels sensitive to large tan β

- Designed to yield the maximum value of the light MSSM Higgs mass, m_h
 - A_t, A_b : stop and sbottom trilinear couplings
 - X_t: stop mixing parameter
 - μ: Higgsino mass parameter
 - M_{SUSY} : common soft-SUSY-breaking squark mass of the third generation
 - M_{SUSY} = 1 TeV
 - $X_t = 2M_{SUSY}$
 - $\mu = 200 \; {
 m GeV}$
 - $M_{gluino} = 800 \text{GeV};$
 - M₂ = 200 GeV
 - $A_b = A_t$
 - M₃ = 800 GeV
 - $X_t = A_t \mu / \tan \beta^2$

- Mass of τ pair is reconstructed from visible τ decay products and missing E_T
 - CMS: likelihood technique
 - ATLAS: "Missing Mass Calculator"
 - \rightarrow m_r average result consistent with true value, width ~13-20%
 - whereas visible mass distribution would be non-Gaussian, σ ~24% (CMS)
- Main backgrounds (in broad strokes may differ from channel to channel):
 - **Ζ→**ττ:
 - embedding technique: take $Z \rightarrow \mu\mu$ from data, replace μ 's by simulated τ decays
 - normalization according to measured $Z \rightarrow \mu\mu$ cross section
 - Z→ee / μμ:
 - from simulation. Correct for fake rates
 - ttbar and di-boson:
 - from simulation. Normalization in background-enriched regions.
 - QCD multijet, W+jets:
 - same-charge $\tau\tau$ events, events with large m_T , di-lepton events with one loosely selected lepton, ABCD method

CMS PAS HIG-12-050

Sensitivity vs category

Sensitivity vs. decay pattern

- → Strong impact of hadronic tau decays
- → Combination of all decay modes and event classes gives best result
- Outlook for $\Phi \rightarrow \tau \tau$: extension to full 8 TeV dataset
 - still additional decay modes to add

$\Phi \rightarrow \tau\tau: Systematic Uncertainties$ (CMS)

- Total integrated luminosity: 4.5%
- Jet energy scale: 2-5%, depending on eta + pt
- Background normalization: (see tables)
- Z boson production cross section: 2.5%
- Lepton id and isolation efficiency: 1.0%
- Trigger efficiency: 1.0%
- Tau-id efficiency uncertainty: 7% (tag & probe)
- b-tagging efficiency: 10%
- b-mistag rate:
- Mass spectrum shape from energy scales: 3% (tau), 1% (muon), 1.5% (electron)

30%

- MSSM theoretical cross sections: up to 25% (depending on mA + tan-beta)
- PDF (MSTW2008): 2-10%
- Renormalization + factorization scale: 5-25% (gg-fusion), 8-15% (ass. prod.)

CMS Phys.Lett. B 722 (2013) 207

- Background shape determined from two independent methods applied to single and double btag samples
- → No indication of a signal

CMS PAS HIG-12-011

- Low BR, but also excellent mass resolution (close to Γ_{Φ}) and manageable BG
- Signature: two oppositely charged muons
 - + b-tagged jet (Cat. 1), non-isolated 3rd muon (Cat. 2), otherwise (Cat. 3)

• Fit detailed mass spectrum of the three Φ states

- Data-driven estimation of backgrounds from sideband fits
- Signal model from simulation
- → Background model fits the data well

ATLAS JHEP 1302 (2013) 095

→ Expected limits on BR(t → b H⁺) in the range ~ 1-2%.

CMS PAS HIG-12-052

- Observed limits slightly higher (coming from τ_h +jets channel)
- MSSM interpretation still based on 2.3 fb⁻¹

- Low BR, but also excellent mass resolution (close to Γ_{Φ}) and manageable BG
- Signature: two oppositely charged muons
 - division into "b-tagged" and "b-vetoed" samples
 ATLAS JHEP 02 (2013) 095

- Dominant background: Drell-Yan, bbZ⁰
 - Drell-Yan background greatly reduced in b-tagged sample
- Data-driven estimation of backgrounds from sidebands, signal model from simulation

• $b\overline{b}$ background modeled as 2D templates, determined from bb-enriched control sample

h_{1,2}→aa→(μμ) (μμ): Backgrounds

- with one di-muon and one muon (no isolation requirement)
- Direct double-J/ ψ production modeled with PYTHIA
- → 8 events observed in off-diagonal sideband

CMS PAS HIG-13-010

Results are interpreted in context of NMSSM and dark-SUSY

- signal efficiencies depend on assumptions for either m_a or m_b
- NMSSM: upper limits vs m_{h1} and m_{a1}
 - m_{h2} unrestricted → conservative assumption on efficiency
 - for NMSSM prediction, assume that only h₁ decays into 2a₁
- → Dark SUSY: upper limits vs m_h
- Best experimental limits in this signature

CMS PAS HIG-13-010

$h_{1,2}$ →aa→(μμ) (μμ): Results