Performance and operation experience of the Atlas Semiconductor Tracker

Zhijun Liang on behalf of ATLAS SCT collaboration University of Oxford

Physics in Collision 2013

The ATLAS Inner Detector

- ATLAS is a multi-purpose detector in LHC.
- The ATLAS inner detector (ID) is composed of three Subdetectors.
 - Pixel detector
 - SemiConductor Tracker (SCT)
 - Transition Radiation Tracker (TRT)
- Inner detector provides
 - Precision tracking at LHC luminosity
 - primary/secondary vertex reconstruction
 - Excellent b-tagging in jets
 - Electron, muon, tau, b- and c- hadron reconstruction

Hit Efficiency

Hit efficiency: (number of hits) / (number of possible hits on tracks)
Hit efficiency > 99.5% over all layers,

By studying In time hit efficiency as a function of readout delay time
Synchronize the readout timing of 4088 modules to 2ns precision

Track Based Alignment

•track-based alignment is performed to minimise χ^2 from hit residuals

>measured hit position minus expected position from track extrapolation.

- The momentum resolution is very close to ideal limits from Monte Carlo predictions.
 - Ideal resolution in Z->µµ peak
- Alignment can be done run by run to improve the momentum resolution
 - detector is stable up to 1~2 micrometers during normal data taking runs
 - Found 5~10 micrometers detector movement in during technical stop during 2012 data taking
 - --due to switch on/off of the cooling or of the solenoid

Laser Alignment

- Frequency Scanning Interferometry (FSI) technique is developed for SCT detector
 - •A geodetic grid attached to the SCT support structures.
 - Monitor the relative position of detector components
 - •all 842 grid lengths are measured to a precision of < 1μ m.

•FSI laser alignment provide

- Good time resolution (a few second)
- Continuous measurements (running during ATLAS stop)
- Cross check of Level 1 track based alignment
 results

•Example : FSI monitor SCT Barrel movement during Solenoid cycle event

Radiation Damage

The radiation effect is also monitored via the module leakage currents.
The predictions of radiation damage are based on

- •the Hamburg/Dortmund model
 - simulations of minimum bias events using FLUKA†

•Excellent agreement for the barrel was found between data and model

Noise and Gain

•After receiving 30 fb⁻¹ of delivered luminosity

•small variations in noise and gain, of the order of a few percent, during 2011 and 2012 for all modules.

- higher noise increase for some modules equipped with CiS sensors
- •Gains: gradual and universal changes of a few % in mid 2011 and early 2012

Lorentz Angle

- •The Lorentz angle is defined as the angle of deflection of the charge carriers in an electrical field due to the influence of a magnetic field.
- It is derived by minimum cluster width as a function of incident track angle
- It is sensitive to the changes in sensor properties

due to radiation and detector conditions

Summary

- Excellent data taking efficiency and SCT hit efficiency
- Advanced track based alignment was performed
 - •Together with laser based alignment to understand detector movement
- Obtain excellent track momentum resolution
- Radiation damage in SCT was measured and monitor.
 - Agreed with predictions, under control
- Tracking and vertexing is robust in high pileup condition

Find more details in poster