

Jet Physics

Selected results from ATLAS and CMS Yanwen Liu Univ. of Science and Technology of China On Behalf of the ATLAS and CMS collaborations

September 4, IHEP

Outline

- Introduction
- Inclusive and multijet measurements
 - Impact of Jet data on PDF fits
 - Determination of strong coupling constant
- Heavy Flavor production
- Jet shapes, substructure and mass
- Summary

Part I: Introduction

Jets are abundantly produced at the LHC Good probes for QCD dynamics

strong interactions to the shortest distance perturbative calculation and modeling of non-perturbative effects

Proton structure

Very important for new physics searches

New Phenomena processes also affected by QCD effects

Jets may be important background and need accurate description Effective techniques can be developed/tested with jet data Challenge at LHC : pile up.

Experiments at LHC

+LHCf, TOTEM

• |η|<3

|η| < 2.5, B=2 T(central solenoid)

CMS Integrated Luminosity, pp

- 1st jet (ordered by p_T): p_T = 1.72 TeV, η = -0.04, ϕ = -2.68
- 2^{nd} jet: p_T = 1.50 TeV, η = 0.64, ϕ = 1.70
- 3rd jet: p_T = 0.22 TeV, η = 0.28, φ = -2.13
- Missing E_T = 29 GeV, ϕ = 0.50
- Sum E_T = 3.91 TeV

Mjj = 3.65 TeV

di-muon event with 25 reconstructed vertices!

Pileup impact on resolutions

ATLAS

- subtract (pile-up density)*(jet area) from jets
- residual correction parameterized as a function of measured number of pile-up events.

CMS

- Particle flow to associate energy deposits with tracks
- (pileup density)*(jet area) correction for neutral particles and tracks not matched to vertex

ATLAS-CONF-2013-083

Jet momentum resolution

ATLAS Eur. Phys. J C(2013) 73:2306 √s=7 TeV, L=35.9 pb1 CMS jet p_{T} resolution 5.0 total systematic uncertainty CaloJets (Anti-k_ R=0.5) MC truth (c-term added) CMS JINST 6(2011) P11002 0 < m/l ≤ 0.5 MC truth data $\sigma(p_{_{T}})/p_{_{T}}$ 0.2 Data 2010 Vs = 7 TeV anti-k, R = 0.6 jets 0.18 ATLAS |y| < 0.80.16 0.14 0.1 0.12 0.1 0.08 EM+JES 0 0.06 EM+JES + TBJC 100 50 200 LCW+JES 0.04 p₋ [GeV] LCW+JES + TBJC 0.02 Improvement (%) √s=7 TeV, L=35.9 pb1 40 CMS EM+JES jet p_T resolution 5.0 PFJets otal systematic uncertainty (Anti-k_⊤ R=0.5) 0 < hµl ≤ 0.5 20 (c-term added) touth 400 500 30 50 60 70 80 100 200 300 40 (p₁₁+p₂)/2 (GeV) particle flow 0.1 2010 7 TeV pp collisions low pile-up 0 100 200 50 11

p_{_} [GeV]

Part II: Inclusive and di-jet measurements

Parton density functions pQCD calculations Modeling of Non-perturbative effects Strong coupling constant

inclusive jet and di-jet cross section

Comparison with NLOJet++

 $y_{max} = max(y_1, y_2)$

testing different PDF sets

NNPDF as reference, i.e. y-axis corresponds to ratio w.r.t predictions with NNPDF.

Experimental uncertainties and theoretical uncertainties comparable.

CMS PAS SMP-12-012

CMS 8 TeV results

HLT Path		PFJet40	PFJet80	PFJet140	PFJet200	PFJet260	PFJet320
$p_{\rm T}$ range (GeV)		74 - 133	133 - 220	220 - 300	300 - 395	395 - 507	507 - 2500
Running period	Prescale	60000	3000	230	80	10	1
2012A	$\mathcal{L}_{ ext{int,eff}}$ ($ ext{pb}^{-1}$)	0.010	0.195	2.782	14.08	60.57	611.02
Running period	Prescale	250000	7000	270	70	15	1
2012B	$\mathcal{L}_{ ext{int,eff}}$ ($ ext{pb}^{-1}$)	0.017	0.630	16.30	64.08	266.286	4140
Running period	Prescale	220500	10000	400	80	20	1
2012C	$\mathcal{L}_{ ext{int,eff}}$ ($ ext{pb}^{-1}$)	0.020	0.533	15.767	79.292	317.158	5966
Total	$\mathcal{L}_{ ext{int,eff}}$ ($ ext{pb}^{-1}$)	0.047	1.358	34.85	157.45	644.014	10717.02

reduced stat. uncertainty at high pT

2010 dataset

inclusive jet (ATLAS) testing PDF

testing various PS tuning

Expect correlated systematics cancel in the ratio

cross section ratio

Dimensionless scale invariant cross section:

Limitation: only 0.2 pb of 2.76 data

$$F(y, x_{\rm T}, \sqrt{s}) = p_{\rm T}^4 E \frac{d^3 \sigma}{dp^3} = \frac{p_{\rm T}^3}{2\pi} \frac{d^2 \sigma}{dp_{\rm T} dy} = \frac{s}{8\pi} x_{\rm T}^3 \frac{d^2 \sigma}{dx_{\rm T} dy}$$

 $x_T = 2 p_T/Vs$ to faciliate comparison of measurements at different Vs Ratio as a function of x_T cancels theor. uncertainties

Ratio as a function of pT cancels exp. uncertainties

 $\frac{1}{2\pi p_{\rm T}} \frac{a}{dp_{\rm T}} dy$

pQCD uncertainties

on inclusive cross sections

On the ratio of cross sections

Non-perturbative correction uncertainty

Comparison to NLO + PS Monte Carlo

significantly reduced theoretical uncertainties.

testing PDFS

influence on g and sea quark densities

ATLAS jet data (2.76 TeV and 7 TeV) favor higher (lower) density of gluons (sea quarks) at high x.

Anticipating ratio measurements of 14/7 14/8 8/7 8/2.76 14/2.76?

ATLAS-CONF-2012-021

full 2011 data

$y^* = |y_1 - y_2|/2$

25

testing NLO + PS NLOJET++ as reference

in some kinematic regions, experimental uncertainties comparable with theoretical uncertainties. Starting to have sensitivity for PDFs. arXiv:1304.7498v1

full 2011 data

CMS 3-jet/2-jet ratio for α_s

Running of α_s

$\langle p_{\mathrm{T1,2}} angle$ range	Q	$\alpha_S(M_Z)$	$\alpha_S(Q)$	No. of data	$\chi^2/N_{\rm dof}$
(GeV)	(GeV)			points	
420-600	474	$0.1147^{+0.0061}_{-0.0021}$	$0.0936 {}^{+0.0040}_{-0.0014}$	6	4.4/5
600-800	664	$0.1132^{+0.0050}_{-0.0031}$	$0.0894 {}^{+0.0031}_{-0.0019}$	5	5.9/4
800–1390	896	$0.1170 {}^{+0.0058}_{-0.0032}$	$0.0889 {}^{+0.0033}_{-0.0018}$	10	5.7/9

Fit for α_s (m_z) using events in each of the 3 <p_{T1,2}> bins Determine the average Q for each bin with NLOJet++ 3-Loop RGE for m_z -> Q

ATLAS-CONF-2014-041

Summary for part II

Inclusive and dijet measurements consistent with MC predictions Experimental uncertainties ~ theoretical uncertainties

- => starting to have constraining power on PDF, parton shower modeling Ratios of different CME: good point!
- Strong coupling constants measured up to ~ 1 TeV : compatible with PDG and RGE evolving.

part III : Heavy flavor production

Masses of c, b quarks significantly above QCD scale Less influence of low energy hadronisation effects on the production cross sections of HF

Eur. Phys. J. C(2013)73:2301 **flavor composition in di-jet events**

Next : pair templates for 2 jets in each event and fit to data

But there are complications that require modifications to the templates

jets containing two b- or c- hadrons

same treatment for c-hadrons.

Fitting the "flavor" templates to data to extracting fractions of each component

GS = Gluon Spliting

 B^{T} distribution different for jets containing 1 or 2 b hadrons

Modifying the templates to including a free parameter, b2 : fraction of jets with 2 hadrons

$$B(\Pi^{\top}, B^{\top}) \rightarrow (1 - b_2) \cdot B(\Pi^{\top}, B^{\top}) + b_2 \cdot B_2(\Pi^{\top}, B^{\top})$$

34

simultaneous fitting results

JHEP 04(2012) 084

Similar ATLAS measurement Eur. Phys. J. C(2011) 71:1846

inclusive b jet production (CMS)

CMS PAS BPH-10-019

b-jet angular correlations

PYHTIA better at predicting the total rate, MadGraph better at predicting the shape.

Summary for part III

Heavy flavor production consistent with predictions. LO MC not good enough in describing the data.

part IV:

Jet shape, substructure and mass

Looking inside the jets now!

Important technique for NP search Jets from decays of a highly boosted heavy particle merged as one "fat" jet.

Using the substructure to reconstruct the mass of the heavy particle.

arXiv:1307.5749

Jet shapes in ttbar events

pT distributions of b-tagged jets (NN tagger) MC :

baseline generators : MC@NLO and POWHEG normalized to best cross sections available

Event selection: two lepton MET 2 jets (at least 1 b-tag)

b-jet purity: 88.5%

ttbar events at LHC : pure b-jet sources

light jets in ttbar events

light jet from single-lepton channel. purity: 66.2%

differential and integral jet shape

$$\Psi(r) = \frac{p_{\mathrm{T}}(0,r)}{p_{\mathrm{T}}(0,R)}; \ r \le R$$
$$\rho(r) = \frac{1}{\Delta r} \frac{p_{\mathrm{T}}(r - \Delta r/2, r + \Delta r/2)}{p_{\mathrm{T}}(0,R)}$$

$$\langle \Psi(r)
angle = rac{1}{N_{
m jets}} \sum_{
m jets} rac{p_{
m T}(0,r)}{p_{
m T}(0,R)}$$

 $\langle
ho(r)
angle = rac{1}{\Delta r} rac{1}{N_{
m jets}} \sum_{
m jets} rac{p_{
m T}(r - \Delta r/2, r + \Delta r/2)}{p_{
m T}(0,R)}$

For current analysis , set $\Delta r = 0.04$

shapes well described by MC

On average, b jets broader than light jets as expected due to higher mass of b quarks 43

ATLAS-CONF-2012-065

Jet mass and substructure

Particles from top decay form a "fat" jet. The large jet area contaminated with energies from pile-up To be removed by "grooming".

parameter

impact on jet mass

inclusive di-jet sample

full 2011 data

jet mass in ttbar events

ttbar single-lepton channel require a b-tagging anti $k_T R = 1.0$

JHEP 05(2013) 090

CMS trimmed jet mass

future : Z' -> ttbar

Summary for part IV

Shapes of light jets and b well described by MC Jet substructure technique tested on di-jet and ttbar events: Working!

Summary

QCD works!

- Good theory/data agreement in jet measurements (pQCD)
- Starting to constraint PDF, no perturbative effects modeling
- Strong coupling constant consistent with previous results
- jet shape and substructure technique tested with jet and ttbar data. Promising for new physics searches.

back up slides

filtering algorithms

for each sub jet:

If yes, merge j1 and j2. Otherwise, drop j2.

Jet algorithms

$$\rho_{ij} = \min\left(p_{Ti}^{2p}, p_{Tj}^{2p}\right) \frac{(\Delta R_{ij})^2}{R^2}$$

"Distance between proto-jets"

 $\rho_{iB} = p_{Ti}^{2p}$

"Beam distance"

if $\rho_{ij} < \rho_{iB}$, i, j combined as one proto-jet

$$k_t : p = +1$$

Cambridge-Aachen : p = 0
anti- k_t : p = -1