Kaon Physics

Tadashi Nomura (KEK)

September 4-7, 2013

Role of Kaon physics

COMMON context TO FLAVOR PHYSICS programs in this era

Indirect search for physics beyond the Standard Model

- Aiming to find deviations from SM with precise measurements (with high intensity)
- Possible to reach higher mass scale

Study of flavor structure beyond SM

- Part of comprehensive approaches to understand BSM
 - not only through one flavor, but also via others...

September 4-7, 2013

Topics in this talk

• Rare decay: $K \rightarrow \pi \nu \nu$

- J-PARC KOTO ; K_L ; physics run
- CERN NA62 ; K^+ ; construction & tech. run
- FNAL ORKA ; K⁺ ; scientific approval, R&D
- Lepton universality: $R_K \equiv Br(K^+e3)/Br(K^+\mu3)$
- T-violation via $K^+ \rightarrow \pi^0 \mu^+ \nu$

will be brief...

I apologize not to cover other important matters...

Decays and experimental reaches

- $K^+ \rightarrow \mu^+ \nu$ 63.6%
- $K^+ \rightarrow \pi^+ \pi^0$ 20.7%
- $K^+ \to \pi^+ \pi^+ \pi^- 5.6\%$
- $K^+ \rightarrow \pi^0 e^+ \nu$ 5.1%
- $K^+ \rightarrow \pi^0 \mu^+ \nu$ 3.4%
- $K^+ \rightarrow \pi^+ \pi^0 \pi^0$ 1.8%

- $K_L \rightarrow \pi^{\pm} e^{\mp} \nu$ 40.6%
- $K_L \rightarrow \pi^{\pm} \mu^{\mp} \nu$ 27.0%
- $K_L \rightarrow \pi^0 \pi^0 \pi^0$ 19.5%
- $K_L \rightarrow \pi^+ \pi^- \pi^0$ 12.5%
- CPV $\begin{bmatrix} K_{L} \rightarrow \pi^{+}\pi^{-} & 2.0 \times 10^{-3} \\ K_{L} \rightarrow \pi^{0}\pi^{0} & 0.9 \times 10^{-3} \end{bmatrix}$
- $K^+ \rightarrow e^+ \nu$ 1.6×10⁻⁵ precise measurement ~10⁵ events (CERN NA62 2007-8)
- $K^+ \rightarrow \pi^+ \nu \nu$ 7.8×10⁻¹¹ 7 events (BNL E787/949) \Rightarrow 100 (CERN NA62)
- $K_L \rightarrow \pi^0 \nu \nu$ 2.4×10⁻¹¹ <2.6×10⁻⁸ (KEK E391a) \Rightarrow a few events (J-PARC KOTO)

September 4-7, 2013

Background source

T. Nomura (KEK), PIC 2013 - IHEP, Beijing

source

$K \rightarrow \pi \nu \nu$ decays

$K \rightarrow \pi \nu \nu$ in the Standard Model

- Process via loop diagrams
 - K_L case:
 - Top quark dominates
 - K⁰-anti-K⁰ superposition extracts imaginary part of the amplitude
 - CP violating
 - K⁺ case:
 - Top and charm contribute
 - Absolute value of $s \rightarrow d$ amplitude
- Theoretically clean

$K \rightarrow \pi \nu \nu$ in the Standard Model

Hadronic parts (κ_L , κ_+) are obtained from precisely measured Br(K⁺ $\rightarrow \pi^0 e^+ \nu$)

$$\mathcal{B}r(K_{L} \to \pi^{0} \bar{\nu} \nu) = \kappa_{L} \left(\frac{\mathrm{Im}(V_{ts}^{*} V_{td})}{\lambda^{5}} X(x_{t}) \right)^{2}$$

$$BR_{SM} = (2.43^{+0.40}_{-0.37} \pm 0.06) \times 10^{-11}$$

Exp: KEK E391a $BR < 2.6 \times 10^{-8}$

$$\begin{aligned} & \mathcal{B}r\left(K^{+} \to \pi^{+}\nu\bar{\nu}(\gamma)\right) = \kappa_{+}(1 + \Delta_{EM}) \\ & \times \left|\frac{V_{ts}^{*}V_{td}X_{t}(m_{t}^{2}) + \lambda^{4}\text{Re}V_{cs}^{*}V_{cd}\left(P_{c}(m_{c}^{2}) + \delta P_{c,u}\right)}{\lambda^{5}}\right|^{2} \\ & BR_{SM} = (7.81^{+0.80}_{-0.71} \pm 0.29) \times 10^{-11} \\ & \text{Exp: BNL E787/949} \\ & BR = (1.73^{+1.15}_{-1.05}) \times 10^{-10} \end{aligned}$$

Intrinsic uncertainty

September 4-7, 2013

Possible BSM effects

T. Nomura (KEK), PIC 2013 - IHEP, Beijing

π0

υ

υ

π0

υ

υ

π0

υ

L)

$K \rightarrow \pi \nu \nu$ Experiments

How to identify $K \rightarrow \pi \nu \nu$ signal

	Initial state	Decay	Final state	Kinematics
$K_L \rightarrow \pi^0 \nu \nu$	K _L (not detected)	in flight	2γ (from π ⁰) and nothing else	Missing momentum taken by 2v
$K^+ \rightarrow \pi^+ \nu \nu$	K+	stopped	π ⁺ and nothing else	
		in flight		

September 4-7, 2013

$K_L \rightarrow \pi^0 \nu \nu$ measurement: J-PARC KOTO

Goal: ~3 SM events / 3 years with S/N ratio ~ 2

(*** assuming design beam power ~270kW)

Genealogy: KEK E391a (record holder)→KOTO FNAL KTeV EM calorimeter ∕

T. Nomura (KEK), PIC 2013 - IHEP, Beijing

September 4-7, 2013

12

mated KL beam

September 4-7, 2013

Principle of experiment

Signature of $K_L \rightarrow \pi^0 \nu \nu = 2\gamma + nothing$

Calorimeter + Hermetic veto detectors

MR

FR

KOTO

NCC

C), PIC 2013 - IHEP, Beijing

<u>KOTO</u>

Key upgrades from KEK E391a

CsI crystals for calorimeter came from FNAL-KTeV

- Longer (30 \rightarrow 50cm), finer granularity (7x7 \rightarrow 2.5x2.5cm²)
 - \Rightarrow Better energy and position resolutions

Improvement of detectors close to the beam

- "Collar" counters with CsI crystal
- Charged-particle veto detector with thinner scintillator
 ⇒ Suppress backgrounds from "halo neutron" interactions

Record waveforms of all detectors

125MHz 14bit ADC (500MHz, 12bit for detectors in the beam)
 ⇒ Accommodate with double pulses in high rate

кото Detector in the vacuu<u>m tank</u>

September 4-7, 2013 Interaction T Nomura (KEK), PIC 2013 - IHEP, Beijing of the residual¹⁷ as

Results from 2013 January engineering run

 $K_1 \rightarrow 2\pi^0$ reconstruction

- $K_L \rightarrow 3\pi^0$ reconstruction
 - Good statistics 20%

OT

1st physics run (May-June 2013)

Slow extraction beam power was 24kW. $(\sim 1/10 \text{ of design value})$

Original goal was

<u>KOTO</u>

to reach the Grossman-Nir limit (~ 10^{-9}) by running for a month.

BUT..., a radiation accident on May 23rd at J-PARC hadron hall terminated the run. (~1/5 of expected statistics)

кото Prospect

Dec 2012 - : Engineering runs with full detector

• May 2013 : Physics run started! ... until the accident

J-PARC is now discussing plans for safety measures. Restart plan will be discussed later.

> 2014 or early 2015? : Cross the G-N limit

Will upgrade the barrel veto detector

- KOTO goal (~SM sensitivity) in 3-4 years run
 - depending on the accelerator schedule and SX power

$K^+ \rightarrow \pi^+ \nu \nu$ measurement: CERN NA62

Decay in flight technique
Aims to detect ~100 events (45 events/year with <10 backgrounds)

Genealogy: CERN NA31→NA48→NA62

Neutral K (ε'/ε , rare decays) \rightarrow K⁺ rare decays

September 4-7, 2013

NA62 detector

K⁺ in, π^+ out, **nothing else**, missing P

Hermetic vetoes

F. Hahn, Kaon 2013

Target CEDAR GTK 50 mrad 7 8.5 mrad LKr MUV Decay Regon 65m RICH Straw Photo vetoes Large-angle veto covers 8.5 - 50 mrad ANTIA Liq. Kr calorimeter covers 1 - 8.5 mrad Small-angle veto covers < 1 mradLarge-angle veto Kr calorimeter Liduid (LG from OPAL) (was NA48 EM CAL

NA62 detector

K⁺ in, π^+ out, nothing else, missing P

Low mass trackers

K⁺ in, π^+ out, nothing else, missing P

 P_{K}

 $\theta_{\pi K}$

CERN NA62

Signal and Background kinematics

Kinematic variable: $m^2_{miss} = (P_K - P_\pi)^2$

<u>CERN NA62</u> Schedule

Dec. 2008

NA62

Tech run 2012 demonstrated time resolution and efficiency of (a part of) sub-detectors.

Oct/Nov.

2012

Technical

approved rest Run LHC LHC LS1 Physics Physics Physics LHC LS2 2019 - 2012 2013 - 2014 2015 2016 2017 2018 - 2019 2018 - 2019 Detector Construction and Installation

September 4-7, 2013

$K^+ \rightarrow \pi^+ \nu \nu$ measurement: FNAL ORKA

•Stopped K⁺ technique, using FNAL Main Injector •Aims to collect ~1000 events

Genealogy: BNL E787→E949 (record holder)→FNAL ORKA

September 4-7, 2013

September 4-7, 2013

T. Nomura (KEK), PIC 2013 - IHEP, Beijing

29

FNAL ORKA Signal and Background kinematics

Avoid peaks of $K^+ \rightarrow \pi^+ \pi^0 (Br=21\%)$ and $K^+ \rightarrow \mu^+ \nu (Br=64\%)$

Established technique used in BNL E787/949

FNAL ORKA

Sensitivity, status, ...

210 SM events/year with FNAL Main Injector

- Improvements from BNL E949
 - K beam: ×10 (improvement of secondary beam line)
 - Acceptance: ×11 (PID, DAQ, ...)
- 5% measurement in 5 years
 - statistic + systematic (uncertainty of backgrounds)

Detector R&D ongoing

If FNAL Project X is realized, it speeds up ORKA

September 4-7, 2013

Other topics

Lepton universality in K

 $^{+}\nu/K^{+}\rightarrow\mu^{+}\nu$

SM well calculate R_K

$$R_{K}^{SM} \equiv \frac{\Gamma(K^{+} \to e^{+}v)}{\Gamma(K^{+} \to \mu^{+}v)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right) (1 + \delta_{rad.corr.})$$
$$R_{K} \equiv (2.477 \pm 0.001) \times 10^{-5}$$

• New physics may contribute • ex., model with 2 Higgs doublets $R_{K}^{NP} = R_{K}^{SM} \left[1 + \frac{m_{K}^{4}}{m_{H^{\pm}}^{4}} \cdot \frac{m_{\tau}^{2}}{m_{e}^{2}} \cdot \Delta_{13} \cdot \tan^{6} \beta \right]$

lepton family number violated

September 4-7, 2013

$\frac{\text{Lepton Universality in } K^{+} \rightarrow e^{+} \nu / K^{+} \rightarrow \mu^{+} \nu}{\text{CERN NA62 result}}$

- **CERN NA62** result based on data taken in 2007-8
 - Collected $1.5 \times 10^5 \text{ K}^+ \rightarrow e^+ \nu$
 - $\frac{R_{K} = (2.488 \pm 0.010) \times 10^{-5}}{\Leftarrow 0.4\%}$ measurement
 - Consistent with SM
- J-PARC TREK/E36 plans to do $\Delta R_K/R_K \sim 0.25\%$ measurement
 - Scientific approval, R&D

T-odd polarization asymmetry in $K^+\mu 3$

$$P_T = \frac{\vec{\sigma}_{\mu} \cdot (\vec{p}_{\pi} \times \vec{p}_{\mu})}{\left| \vec{p}_{\pi} \times \vec{p}_{\mu} \right|}$$

 P_T vanishes in the SM at the tree-level

September 4-7, 2013

Current limit: P_T<5×10⁻³ (90%CL) by KEK E246

SM: $P_{T} \sim 10^{-5}$

 $P_{T} \sim 10^{-7}$ with FSI:

> Charged Higgs boson contribution to $K^+\mu_3$

 π^0

P_T~10⁻⁴ indicates

NP contribution

 \Rightarrow J-PARC TREK aims to reach $\delta P_T \sim 2 \times 10^{-4}$

K+ decay in its rest frame

T. Nomura (KEK), PIC 2013 - IHEP, Beijing

 (\mathbf{Y})

 P_{T}

H ⁺ (q)

 K^{-}

Genealogy: KEK E246 (record holder)→J-PARC TREK J-PARC TREK(E06)/E36 Detector and status

IRON POLE

Upgrade of KEK E246 \Rightarrow TREK aims to reach $\delta P_T \sim 2 \times 10^{-4}$

End view

(3) μ^+ to polarimeter through SC toroidal spectrometer

Side view

Step1: E36 R_K measurement Step2: TREK T-violation study (when beam power gets higher)

Status: R&D

 $A = \frac{N_{CW} - N_{CCW}}{N_{CW} + N_{CCW}}$ * STOPPER Cryostal Polarimeter Trigger C à⊷Z (1) Stopped K^+ Ring Counter Degrader 1.0 mhy..... (4) Measure CW/CCW asymmetry of e^+ (2) Tag π^0 and in azimuthally symmetrical detector define direction (FWD/BWD) September 4-7,

Summary

 Kaon physics is one of the important approaches to BSM in the context of flavor physics.

Active experimental efforts are ongoing.

- J-PARC KOTO ($K_L \rightarrow \pi^0 \nu \nu$) performed 1st physics run.
- CERN NA62 (K⁺ $\rightarrow \pi^+ \nu \nu$) is in preparation.
- Experiments aiming further sensitivity (ORKA, ...) are under consideration.

KAON efforts proceed step by step to take a role to explore physics beyond SM.

