Charged Lepton Flavor Violation Experiments

Toshinori MORI The University of Tokyo

Lepton Flavor Violation

i.e. mixings between generations

Lepton flavor is severely violated in neutrino oscillations

It must be violated in charged leptons !!

Charged leptons should also mix flavors!

neutrinos are too light

...but practically no mixing

TeV scale physics helps them mix !

Perhaps we can observe!

TeV scale physics strongly constrained by LHC

 Particle not strongly interacting are NOT strongly constrained

Dark matter may come from TeV scale physics!

and not necessarily SUSY

Complementary to LHC + sources of LFV GUT, seesaw

Recent Progress in Particle Physics

 $M_{H} = \lambda v$

 $\lambda^2/2$

• Discovery of "Higgs"

• Higgs is light (125GeV)

Higgs is unlikely to be composite
 Good prospects for GUT

Discovery of the third neutrino oscillation

Mixing is large (mixing angle ~9deg)

Large cLFV expected, e.g. $\mu \rightarrow e\gamma$

Expectations rising high for cLFV searches

Implication of Large θ_{13} —— Iarger BR($\mu \rightarrow e\gamma$)

S. Antusch et al. JHEP11 (2006) 090

Implication of Large θ_{13} —— larger BR($\mu \rightarrow e\gamma$)

S. Antusch et al. JHEP11 (2006) 090

S. Antusch et al. JHEP11 (2006) 090

I will NOT discuss...

LFV in K, D, B, ...

NOT DISCUSSED IN THIS TALK

Table 4 Bounds at 90% CL on selected lepton flavo

pseudoscalar mesons

Channel	Upper limit	Experiment	Reference
$\pi^0 o \mu^{\pm} \mathrm{e}^{\mp}$	3.59×10^{-10}	KTeV	75
$\eta \rightarrow \mu^{\pm} \mathrm{e}^{\mp}$	6×10^{-6}	Saturne SPES2	76
$K_L^0 \to \pi^0 \mu^\pm \mathrm{e}^\mp$	7.56×10^{-11}	KTeV	75
$K_L^0 \to 2\pi^0 \mu^\pm \mathrm{e}^\mp$	1.64×10^{-10}	KTeV	75
$K_L^0 \rightarrow \mu^+ \mathrm{e}^-$	4.7×10^{-12}	BNL E871	74
$K^+ \rightarrow \pi^+ \mu^+ \mathrm{e}^-$	1.3×10^{-11}	BNL E865, E777	73
$D^+ \rightarrow \pi^+ \mu^\pm e^\mp$	3.4×10^{-5}	Fermilab E791	77
$D^+ \rightarrow K^+ \mu^\pm \mathrm{e}^\mp$	6.8×10^{-5}	Fermilab E791	77
$D^0 ightarrow \mu^\pm \mathrm{e}^\mp$	8.1×10^{-7}	BaBar	78
$D_s^+ \rightarrow \pi^+ \mu^\pm \mathrm{e}^\mp$	6.1×10^{-4}	Fermilab E791	77
$D_s^+ \to K^+ \mu^\pm \mathrm{e}^\mp$	6.3×10^{-4}	Fermilab E791	77
$B^0 ightarrow \mu^{\pm} \mathrm{e}^{\mp}$	9.2×10^{-8}	BaBar (347 fb ⁻¹)	79
$B^0 \rightarrow \tau^{\pm} e^{\mp}$	1.1×10^{-4}	CLEO (9.2 fb ⁻¹)	80
$B^0 \to \tau^{\pm} \mu^{\mp}$	3.8×10^{-5}	CLEO (9.2 fb ⁻¹)	80
$B^+ \to K^+ e^{\pm} \mu^{\mp}$	9.1×10^{-8}	BaBar (208 fb ⁻¹)	81
$B^+ \to K^+ e^{\pm} \tau^{\mp}$	7.7×10^{-5}	BaBar (348 fb ⁻¹)	82
$B_s^0 \to \mathrm{e}^{\pm} \mu^{\mp}$	6.1×10^{-6}	CDF (102 pb ⁻¹)	83

Marciano, Mori, Roney

More decay modes have been recently explored also by LHCb

Summary of results in LFV searches

channel	limit		
$\mathcal{B}(B^- \rightarrow \pi^+ e^- e^-)$	$< 2.3 \times 10^{-8}$	@90 % CL	a
$\mathcal{B}(B^- \rightarrow K^+ e^- e^-)$	$< 3.0 \times 10^{-8}$	@90 % CL	a a
$\mathcal{B}(B^- \rightarrow K^{*+}e^-e^-)$	$< 2.8 \times 10^{-6}$	@90 % CL	ō5 ^b
$\mathcal{B}(B^- \rightarrow \rho^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90 % CL	ōۇ⊅
$\mathcal{B}(B^- \rightarrow D^+ e^- e^-)$	$< 2.6 \times 10^{-6}$	@90 % CL	Bc
$\mathcal{B}(B^- \rightarrow D^+ e^- \mu^-)$	$< 1.8 \times 10^{-6}$	@90 % CL	Bc
$\mathcal{B}(\mathrm{B}^- o \pi^+ \mu^- \mu^-)$	$< 1.3 \times 10^{-8}$	@95 % CL	thep d
$\mathcal{B}(B^- \to K^+ \mu^- \mu^-)$	$< 5.4 \times 10^{-7}$	@95 % CL	thep e
$\mathcal{B}(B^- \rightarrow D^+ \mu^- \mu^-)$	$< 6.9 \times 10^{-7}$	@95 % CL	Hich d
$\mathcal{B}(B^- \rightarrow D^{*+} \mu^- \mu^-)$	$< 2.4 \times 10^{-6}$	@95 % CL	Hich d
$\mathcal{B}(B^- \rightarrow D_s^+ \mu^- \mu^-)$	$< 5.8 \times 10^{-7}$	@95 % CL	Hich d
$\mathcal{B}(B^- \rightarrow D^0 \pi^- \mu^- \mu^-)$	$< 1.5 \times 10^{-6}$	@95 % CL	Hick d

^aBaBar, Phys. Rev. D **85**, 071103 (2012) ^bCLEO, Phys. Rev. D **65**, 111102 (2002) ^cBelle, Phys. Rev. D **84**, 071106(R), (2011) ^dLHCb, Phys. Rev. D **85**,112004 (2012) ^eLHCb, Phys. Rev. Lett. 108 101601 (2012)

Direct Searches for New Particles with cLFV Decays at LHC

- RPV SUSY $W_{RPV} = \lambda_{ijk} L_i L_j \bar{E}_k$
- Heavy Majorana neutrino

 $\blacksquare Z' \to \ell_1 \ell_2$

I will mainly discuss...

Sensitivity comparisons

$\mu \to e \gamma \quad \mu N \to e N \quad \mu \to 3 e$

$BR = 4 \times 10^{-14} : 1 \times 10^{-16} : 2 \times 10^{-16}$

~MEG II goal

for AI target

Some models have contact terms which strongly enhance $\mu N \to e N \qquad \mu \to 3e$

A. Edmonds, cLFV Lecce, May 2013 (modified by TM)

 $\mu
ightarrow e \gamma$ has been always leading the race

The $\mu^+ \to e^+ \gamma$ process

clear 2-body kinematics

 need positive muons to avoid formation of muonic atoms

 accidental background limits the experiment

> DC beam, rather than pulsed beam, gives lowest instantaneous rate and thus lowest background

Searching for 1 out of 10¹³

 Need to measure at least 10¹³ muons within ~1 year (~10⁷sec)

• 10^{13} muons / 10^7 sec / efficiency = 10^{7-8} muons /sec

Need a high power accelerator to produce lots of muons

Background

Prompt Background

Accidental Background dominant $V \wedge V \mu^+ e^+$

Radiative muon decayAccidental pileupAny angleAny angle< 52.8 MeV/c</td>< 52.8 MeV/c</td>Same timeFlat

Accidental Background Distribution

must manage high rate e⁺

good γ resolution is most important !

So the experiment needs:

High intensity (~10⁷/sec) DC muon beam
e⁺ spectrometer that can manage high rate
High resolution gamma-ray detector

MEG Experiment at PSI

The MEG Experiment

LXe Gamma-ray Detector

COBRA SC Magnet

Muon Beam

DC

U.

Drift Chamber

~55 collaborators

Timing Counter

1.3MW Proton Cyclotron at PSI

The Unique Place

Provides world's most powerful DC muon beam > 10⁸/sec

COBRA Positron Spectrometer Gradient B field helps to manage high rate e⁺

 thin-walled SC solenoid with a gradient magnetic field: 1.27 - 0.49 Tesla

COBRA

compensation coils

2.7t Liquid Xenon Photon Detector

High resolution detector

- Scintillation light from 900 liter liquid xenon is detected by 846
 PMTs mounted on all surfaces and submerged in the xenon
- fast response & high light yield provide good resolutions of E, time, position
- kept at 165K by 200W pulse-tube refrigerator
- gas/liquid circulation system to purify xenon to remove contaminants

Energy = total light yield Position = light peak

Blind & Likelihood Analysis

PDFs mostly from data accidental BG: side bands signal: measured resolution radiative BG: theory + resolution

T_{ey} resolution

2009-2011 Side band data

side band BG rates are consistent with the expected sensitivity for 2009-11 data = 7.7×10⁻¹³ @90% C.L.

BLIND BOX OPENED!

a few examples of events

2009-2011 combined data

unblinded data

1, 1.64, 2σ contours
Likelihood Fit - 2009-2011 Data

Likelihood Analysis

Likelihood Analysis Results

	BR(fit)	90% UL	sensitivity	
2009+2010	0.09×10 ⁻¹²	1.3×10 ⁻¹²	1.3×10 ⁻¹²	
2011	-0.35×10 ⁻¹²	0.67×10 ⁻¹²	1.1×10 ⁻¹²	
2009-2011	-0.06×10 ⁻¹²	0.57×10 ⁻¹²	0.77×10 ⁻¹²	

combined result

4× improved upper limit than previous 2.4×10⁻¹²

Here TeV SUSY is assumed, but the relation should be more generic independent of whatever TeV physics might be

 $|\delta_{LL}^{12}| = 10^{-4}$ assumed

G.Isidori et al. PRD75, 115019

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

Re-analysis using the updated result is urgent !

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

 $^{|\}delta_{LL}^{12}| = 10^{-4}$ assumed

MEG upgrade

- MEG upgrade proposal was submitted to PSI, December 2012
- Approved by PSI committee, January 2013

Drift Chamber

sustain higher muon rate & ageing
finer granularity & better resolution
lager combined DC+TC acceptance

Timing Counters

 proven technology using SiPM
 excellent resolutions expected using multiple counters

LXe Detector

- finer photon sensors at entrance face
- better uniformity better resolution
- better handles for pile ups

(a) Present detector

(b) Upgraded detector (CG)

LXe detector proved to work at 10⁸ muons/s w/o pileup issues

Resolutions, Efficiencies, & Sensitivity

PDF narameters	Present MEG	Ungrade scenario	191					
e ⁺ energy (keV)	306 (core)	130	nchir					
$e^+ \theta$ (mrad)	9.4	5.3		лес эс	112			
$e^+ \phi$ (mrad)	8.7	3.7			113			
e^+ vertex (mm) $Z/Y(core)$	2.4 / 1.2	1.6 / 0.7	-				·····	
γ energy (%) (w <2 cm)/(w >2 cm)	2.4 / 1.7	1.1 / 1.0	-					
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5	-					
γ -e ⁺ timing (ps)	122	84	10					
Efficiency (%)			10 ⁻¹³					
trigger	≈ 99	≈ 99	-					
γ	63	69	-					
e ⁺	40	88	-					
muon rate 3.	3x10 ⁷ /sec 7	'x10 ⁷ /sec	-	Upgra	ded MEG	in 3 years		

weeks

$\mu \rightarrow e \text{ conversion } \mu N \rightarrow e N$

muonic atom

• negative muons to make muonic atoms

• signal:

- a single electron $E_e = M_{\mu} \delta$
- background:
 - decay in orbit $(E_{max} E_e)^5$

• beam related e.g. pion capture

Lots of muons are needed

Pion Capture Solenoid System

Captured pions are transported and momentum selected by solenoids

Pulsed Proton Beam

- * <u>Extinction</u> (= Residual protons in between the pulses)
- Dominant Backgrounds
 - * Beam Pion Capture
 - * $\pi + (A,Z) \rightarrow (A,Z-1)^*$ $\rightarrow \gamma + (A,Z-1), \gamma \rightarrow e^+e^-$
 - Prompt Timing
 - * cf. τ_(muonic Al)=0.88μs
 - Muon DIO, e⁻ scattering

Extinction should be <10-9 : To achieve 10-17 Single Event Sensitivity

Proton Beam Extinction

• Single bunch kick injection method successfully demonstrated in June 2012 at J-PARC

A. Edmonds, cLFV Lecce, May 2013

Mu2e Signal Sensitivity

Full G4 detector simulation, background overlay, reconstruction

Reconstructed e Momentum

MU2e

TimeLine

Facility Construction

Work already under way on the facility construction

A. Edmonds, cLFV Lecce, May 2013

 $\mu^+ \rightarrow e^+ e^- e^+$

- Needs a sensitivity of 10⁻¹⁶ to be competitive
- Dominated by accidental overlaps
 - DC muon beam: PSI 10⁻¹⁵ possible?
- Biggest issue is high rate tracking

- Combination of positrons from ordinary muon decay with electrons from:
 - photon conversion,
 - Bhabha scattering,
 - Mis-reconstruction

 Need very good timing, vertex and momentum resolution

Internal conversion background

• Allowed radiative decay with internal conversion:

 $\mu^{+} \rightarrow e^{+}e^{-}e^{+}\nu\overline{\nu}$

 Only distinguishing feature: Missing momentum carried by neutrinos

 Need excellent momentum resolution

 $\mu^+ \rightarrow e^+ e^- e^+$

- Needs a sensitivity of 10⁻¹⁶ to be competitive
- Dominated by accidental overlaps
 - DC muon beam: PSI 10⁻¹⁵ possible?
- Biggest issue is high rate tracking
 - gain by better vertexing & momentum resolution over the previous experiment

Mu3e experiment at PSI

EV-MAPS high voltage monolithic active pixel sensors

50µm Si + 25µm Kapton flexprint w/ Al traces + 25µm Kapton frame <0.1% X $_0$ / layer

cf. 0.2% X_0 / e⁺ trajectory for MEG spectrometer

Niklaus Berger – Lecce, May 2013 – Slide 52

A. Edmonds, cLFV Lecce, May 2013 (modified by TM)

The other modes are catching up with $\mu
ightarrow e \gamma$

New muon source w/ higher intensity is necessary for further developments

 $\mu \rightarrow e \gamma$ $\mu N \rightarrow e N$ also benefit

High Intensity Muon Beamline at PSI

1st Conference on Charged Lepton Flavor Violation

PRISM/PRIME

mu-e conversion

- To get down to 10⁻¹⁸ and beyond PRISM/PRIME propose to use an FFAG ring
- This gives the muon beam a small momentum width which allows the use of one target disk

cLFV in t decays

- e+e⁻ B factories
- τ always pair-produced
 - tag one τ, and
 - look for LFV in the other side

$\tau^+ \longrightarrow |^+|^-|^+$

Phys. Lett. B687, 139 (2010)

- Based on 782/fb of Belle data
- Virtually background free due to good lepton ID
- Zero events observed in all 6 modes

90% C.L. upper limits between 1.5 x 10^{-8} and 2.7 x 10^{-8}

Mode	ε (%)	$N_{ m BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	$\mathcal{B}(imes 10^{-8})$
$\tau^- \to e^- e^+ e^-$	6.0	$0.21{\pm}0.15$	9.8	0	<2.7
$\tau^- \to \mu^- \mu^+ \mu^-$	7.6	$0.13 {\pm} 0.06$	7.4	0	<2.1
$\tau^- \to e^- \mu^+ \mu^-$	6.1	$0.10 {\pm} 0.04$	9.5	0	<2.7
$\tau^- \to \mu^- e^+ e^-$	9.3	$0.04 {\pm} 0.04$	7.8	0	<1.8
$\tau^- \to e^+ \mu^- \mu^-$	10.1	$0.02{\pm}0.02$	7.6	0	<1.7
$\tau^- \to \mu^+ e^- e^-$	11.5	$0.01{\pm}0.01$	7.7	0	<1.5

Results

- Expected & observed limit as a function of branching fraction
 - yellow 68% region, green 95% region
- Limits are quoted for the phase-space model of τ decay
 - Variation of efficiencies in Dimuon mass range is small (< 20%)
- Upper limits:

little worse than Belle, first upper limit for $\tau^- \to \mu^+ \mu^- \mu^-$ in proton collider

3

Old result for $\tau \rightarrow \mu \gamma$

Phys. Lett. B666, 16 (2008)

- Based on 545/fb data
- Main backgrounds: $\tau \rightarrow \mu \nu \nu$ and dimuon events with ISR
- 94 events found in the 5σ signal region, while expecting (88 +/- 7)
- 90% C.L. upper limits
 - Expected: 7.8 x 10⁻⁸
 - Observed: 4.5 x 10⁻⁸

Now updating to the full Belle dataset (980/fb)...

better sensitivity at τ/c factory?

cLFV searches in t decays

$\tau \rightarrow \mu \gamma$ background at Belle II

But people and analysis methods are evolving...

Prospects for τ LFV at Belle II

- Belle II will collect
 ~10¹¹ τ-leptons (50/ab)
- Sensitivity depends on the background level
 - $-\tau \rightarrow 3$ I still clean even at Belle II
 - For τ → μγ better understanding of backgrounds, signal resolution and intelligent selections are needed

τ - future prospects

D. Hitlin, cLFV Lecce, May 2013

Conclusion

- Researches on Charged Lepton Flavor Violation
 - Pioneered by MEG and e⁺e⁻ B factories
 - Complementarity and synergy with LHC
 - High expectations for discoveries (or constraints)
 - Preparations for next generation experiments going on
 - Bright future prospects even beyond