Test of QCD at large Q² with exclusive hadronic processes

PIC 2013 : 4-7 September, 2013, IHEP

Outline:

• The Belle experiment • Y(1S,2S) \rightarrow Vector-Peseudoscalar • $e^+e^- \rightarrow \omega \pi^0$, K*K, K²*K

*More Y(1S/2S) → Vector-Tensor, Axial-vector-Pseudoscalar results, please refer to Phys. Rev. D 86, 031102(R) (2012)

KEKB/Belle World maximum luminosity

Peak lumi record at KEKB: L=2.1 x 10³⁴/cm²/sec with crab cavities

$Y(1S,2S) \rightarrow Vector-Pseudoscalar$

Phys. Rev. D 88, 011102(R) (2013)

Look for final states: $K_s K^+ \pi^-, \pi^+ \pi^- \pi^0 \pi^0, \pi^+ \pi^- \pi^0$

 X_T :total final-state particle energy at CM over \sqrt{s}

Summary for $Y(1S,2S) \rightarrow VP$

continuum

Y(1S/2S)→VP Results and Discussions

Channel		$\Upsilon(1S)$		$\Upsilon(2S)$			
	$N_{ m sig}$	\mathcal{B}	$\mathcal{B}^{\mathrm{UL}}$	$N^{ m sig}$	\mathcal{B}	$\mathcal{B}^{\mathrm{UL}}$	$Q_{\Upsilon}/Q_{\Upsilon}^{ m UL}$
$K^0_S K^+ \pi^-$	37.2 ± 7.6	$1.59 \pm 0.33 \pm 0.18$		39.5 ± 10.3	$1.14 \pm 0.30 \pm 0.13$		$0.72 \pm 0.24 \pm 0.09$
$\pi^+\pi^-\pi^0\pi^0$	143.2 ± 22.4	$12.8 \pm 2.01 \pm 2.27$		260.7 ± 37.2	$13.0 \pm 1.86 \pm 2.08$		$1.01 \pm 0.22 \pm 0.23$
$\pi^+\pi^-\pi^0$	25.5 ± 8.6	$2.14 \pm 0.72 \pm 0.34$	—	-2.1 ± 9.5	$-0.10 \pm 0.46 \pm 0.02$	0.80	0.42
$K^*(892)^0 \bar{K}^0$	16.1 ± 4.7	$2.92 \pm 0.85 \pm 0.37$		14.7 ± 6.0	$1.79 \pm 0.73 \pm 0.30$	4.22	1.20
$K^*(892)^-K^+$	2.0 ± 1.9	$0.31 \pm 0.30 \pm 0.04$	1.11	5.7 ± 3.4	$0.58 \pm 0.35 \pm 0.09$	1.45	5.52
$\omega\pi^0$	2.5 ± 2.1	$1.32 \pm 1.11 \pm 0.14$	3.90	0.1 ± 2.2	$0.03 \pm 0.68 \pm 0.01$	1.63	1.68
$ ho\pi$	11.3 ± 5.9	$1.75 \pm 0.91 \pm 0.28$	3.68	-1.4 ± 8.6	$-0.11 \pm 0.64 \pm 0.03$	1.16	0.94

Observed for the 1st time

indication for large isospin violation

1. For the processes Ks K π and $\pi + \pi^{-} \pi^{0} \pi^{0}$, the Q_Y ratios are consistent with the expected value.

2. For $\pi + \pi^{-1} \pi^{0}$, the Q_Y ratio is a little lower than the pQCD prediction. 3. The results for the other modes are inconclusive due to low statistical

significance.

4. These results may supply useful guidance for interpreting violations of the 12% rule for OZI-suppressed decays in the charmonium sector.

$\mathcal{F}_{\text{BELLE}} e^+e^- \rightarrow \omega \pi^0, K^*\overline{K}, K_2^*\overline{K}$

1. Investigate the energy dependence of various meson form factors and shed light on hadron structure and hence the strong interaction.

2. $e^+e^- \rightarrow \omega \pi$ is a EM process. Form factor is predicted to be 1/s dependence [PLB425,365]

3. At large \sqrt{s} , cross sections ratio $\omega \pi^0 : K^{*0} \overline{K}^0 : K^{*-} K^+ = 9:8:2$ if SU(3)_f symmetry is perfect. But, this relation was severely violated at 3.67 and 3.773 GeV from CLEO results:

 $R_{\rm VP} = \frac{\sigma_B (e^+ e^- \to K^* (892)^0 \bar{K}^0)}{\sigma_B (e^+ e^- \to K^* (892)^- K^+)} > 9 \text{ and } 33 \text{ at } 3.67 \text{ and } 3.77 \text{ GeV}$

4. A pQCD calculation [PRD75,094020] predicts R_{VP} =6 5. In the quark model, we expect:

$$R_{\rm TP} = \frac{\sigma_B(e^+e^- \to K_2^*(1430)^0 \bar{K}^0)}{\sigma_B(e^+e^- \to K_2^*(1430)^- K^+)} = R_{\rm V}$$

BELLE

 $e^+e^- \rightarrow \omega \pi^0, K^*K, K_2^*K$

•Data samples: 89fb⁻¹ 10.52GeV, 703fb⁻¹ Y(4S), 121fb⁻¹ Y(5S)

NEW

- Signal generator: MCGPJ [next-to-leading order RC included] relimin
- Background: PYTHIA
- •Same techniques as $Y(1S,2S) \rightarrow VP$

 X_{T} :total final-state particle energy at CM over \sqrt{s}

Projection plots to extract ω, K^*, K_2^* in signal region

NEW

as an example

Channel	$\sqrt{s} \; (\text{GeV})$	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	ϵ (%)	$\Sigma (\sigma)$	σ_B (fb)	$\sigma_B^{\rm UL}~({\rm fb})$	Born cross section
$\omega\pi^0$	10.52	$4.1^{+3.3}_{-2.6}$	9.9	1.25	1.6	$4.53^{+3.64}_{-2.88}\pm0.50$	11	
	10.58	$38.8^{+8.3}_{-7.6}$		1.10	6.7	$6.01^{+1.29}_{-1.18}\pm0.57$		$R_{\rm VP} = \frac{\sigma_B(e^+e^- \to K^*(892)^0 \bar{K}^0)}{\sigma_B(e^+e^- \to K^*(892)^- K^+)} > 4.3, \ 20.0, \ 5.4,$
	10.876	$-0.7^{+2.9}_{-2.1}$	7.0	1.07	3 <u></u>	$-0.68^{+2.71}_{-1.97} \pm 0.20$	6.5	
$K^*(892)^0 \bar{K}^0$	10.52	$34.6^{+6.9}_{-6.1}$		16.49	7.4	$10.77^{+2.15}_{-1.90} \pm 0.77$		$B_{\rm TD} = \frac{\sigma_B(e^+e^- \to K_2^*(1430)^0 \bar{K}^0)}{(1430)^0 \bar{K}^0} < 1.1, 0.4, 0.6,$
	10.58	187 ± 17		16.30	>10	$7.48 \pm 0.67 \pm 0.51$		$\sigma_B(e^+e^- \to K_2^*(1430)^-K^+)$ (111, 011, 011, 011, 011, 011, 011, 011
	10.876	$34.6^{+7.5}_{-6.7}$		17.25	7.2	$7.58^{+1.64}_{-1.47}\pm0.63$		for 10.52,10.58 and 10.876 GeV
$K^{*}(892)^{-}K^{+}$	10.52	$4.6^{+3.6}_{-2.7}$	9.3	20.40	1.4	$1.14^{+0.90}_{-0.67}\pm0.15$	2.3	
	10.58	$5.9^{+4.7}_{-3.8}$	14	21.03	1.5	$0.18^{+0.14}_{-0.12}\pm0.02$	0.4	Consistent with theoretical
	10.876	$1.6^{+3.9}_{-3.0}$	8.5	21.29	0.3	$0.28^{+0.68}_{-0.52}\pm0.10$	1.5	prediction [PRD 75,094020]
$K_2^*(1430)^0 \bar{K}^0$	10.52	$1.3^{+4.3}_{-3.9}$	6.8	17.63	0.3	$0.76^{+2.53}_{-2.26}\pm0.14$	4.0	
	10.58	21^{+11}_{-10}	40	16.71	2.1	$1.65^{+0.86}_{-0.78}\pm0.27$	3.1	All the results on the cross
	10.876	$1.0^{+4.5}_{-3.7}$	8.9	19.02	0.2	$0.38^{+1.79}_{-1.47} \pm 0.07$	3.5	sections at 10.52, 10.58, and
$K_2^*(1430)^-K^+$	10.52	$12.0^{+6.2}_{-5.8}$	21	20.36	2.1	$6.06^{+3.13}_{-2.93}\pm1.34$	11	10.876 GeV, including
	10.58	129 ± 15	_	20.17	>10	$8.36 \pm 0.95 \pm 0.62$	Q	upper limits, are the first
	10.876	$17.6^{+5.3}_{-4.6}$		21.50	4.5	$6.20^{+1.86}_{-1.63} \pm 0.64$		measurements up to now.

Violate SU(3) sym. $\omega \pi^0 : K^*(892)^0 \overline{K}^0 : K^*(892)^- K^+ = 9:8:2$

These are significantly different from the $1/s^2$ [PLB425,365] or $1/s^3$ [PRD75,094020] predictions and agree with $1/s^4$ [PRD22,2175; 24,2848; 78, 074032] within 2.5 σ .