Charged-Current Coherent ρ Production in Neutrino-nucleus Interactions

Xinchun Tian for the NOMAD Collaboration

Department of Physics and Astronomy

NuFact 2013 @ IHEP, Beijing, 2013/08/22

Xinchun Tian (USC, Columbia)

Outline

 ${\rm Coh}\rho$ production in neutrino-nucleus

Motivation

The NOMAD Experiment

The Analysis

Coherent Meson Production Study at LBNE

Conclusion

Xinchun Tian (USC, Columbia)

 $Coh\rho$ production in neutrino-nucleus

 $\frac{d^{3}\sigma(\nu_{\mu}\mathcal{A} \to \mu^{-}\rho^{+}\mathcal{A})}{dQ^{2}d\nu dt} = \frac{G_{F}^{2}}{4\pi^{2}} \frac{f_{\rho}^{2}}{1-\epsilon} \frac{|q|}{E_{\nu}^{2}} \left[\frac{Q}{Q^{2}+m_{\rho}^{2}} \right]^{2} (1+\epsilon R) \left[\frac{d\sigma^{T}(\rho^{+}\mathcal{A} \to \rho^{+}\mathcal{A})}{dt} \right]$

 $\frac{\ln \text{ simple Rein Sehgal meson absorption model}}{\frac{d\sigma^{T}(\rho^{+}\mathcal{A} \rightarrow \rho^{+}\mathcal{A})}{dt}} = \frac{\mathcal{A}^{2}}{16\pi}\sigma^{2}(hn)exp(-b|t|)F_{abs}$

 $\frac{\operatorname{Coh}\rho^{0} \text{ is about 15\% of } \operatorname{Coh}\rho^{+} \text{ related by weak mixing angle}}{dQ^{2}d\nu dt} = \frac{1}{2}(1-2\sin^{2}\theta_{W})^{2}\frac{d^{3}\sigma(\nu_{\mu}\mathcal{A}\to\mu^{-}\rho^{+}\mathcal{A})}{dQ^{2}d\nu dt}$

Xinchun Tian (USC, Columbia)

 $Coh\rho$ production in neutrino-nucleus

Kinematic Variables

$$\nu, Q^2, x, y, W^2$$
 $t = [\Sigma_i(E_i - p_{i,L})]^2 + [\Sigma_i(p_{i,T})]^2$
 $z = E(1 - \cos \theta)$

Xinchun Tian (USC, Columbia)

Motivation

Physics

- Structure of Weak-Current and its Hadronic-Content
 - Coh π : Partially Conserved Axial Current (PCAC) and Adler's theorem at high energy ($E_{\nu} > 2$ GeV) and Microscopic model at low energy ($E_{\nu} < 1.5$ GeV)
 - Coh ρ : Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)

Motivation

Physics

- Structure of Weak-Current and its Hadronic-Content
 - Coh π : Partially Conserved Axial Current (PCAC) and Adler's theorem at high energy ($E_{\nu} > 2$ GeV) and Microscopic model at low energy ($E_{\nu} < 1.5$ GeV)
 - Coh ρ : Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)

Utility

- ${\rm Coh}\pi^+/{\rm Coh}\pi^-$: Identical final state $(\mu^\mp\pi^\pm)$ to constraint the $\bar{
 u}/
 u$ energy scale
- Neutrino Coh ρ measurements (±,0) in conjunction with the photoproduction data on Coh ρ^0 will provide a constraint on neutrino flux
- A background in $\mathrm{Coh}\pi^{\pm}$ measurements

Motivation

Physics

- Structure of Weak-Current and its Hadronic-Content
 - Coh π : Partially Conserved Axial Current (PCAC) and Adler's theorem at high energy ($E_{\nu} > 2$ GeV) and Microscopic model at low energy ($E_{\nu} < 1.5$ GeV)
 - Coh ρ : Conserved Vector Current (CVC) and Vector Meson Dominance (VMD)

Utility

- ${\sf Coh}\pi^+/{\sf Coh}\pi^-$: Identical final state $(\mu^\mp\pi^\pm)$ to constraint the $\bar{
 u}/
 u$ energy scale
- Neutrino Coh ρ measurements (±,0) in conjunction with the photoproduction data on Coh ρ^0 will provide a constraint on neutrino flux
- A background in $\mathrm{Coh}\pi^\pm$ measurements

A matrix of 6 coherent-meson measurements leads to much better modeling of low- Q^2 processes and provides constraints on flux that are independent of the usual methods.

Xinchun Tian (USC, Columbia)

$\mathsf{Coh}\rho^{\pm}$ Measurements Overview

Table: The $Coh\rho^{\pm}$ measurements have very large errors and the first measurement of $Coh\rho^{0}$ in NC was reported by H. Duyang at this conference, no measurement at low energy.

Xinchun Tian (USC, Columbia)

The NOMAD Experiment

The NOMAD (Neutrino Oscillation MAgnetic Detector) Experiment Elements

The NOMAD experiment was designed to search for $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations at $\Delta m^2 \ge 5 \text{ eV}^2$ at CERN SPS.

- Beam 450 GeV protons from CERN Super Proton Synchrotron (SPS) incident on a beryllium target producing the neutrino beam (0-300 GeV, average E_{ν} is ~25 GeV)
- Detector Active target (2.7 tons, mostly "Carbon" with low density ${\sim}0.1~g/cm^3)$ composed of Drift Chamber Tracker embedded in a 0.4 T B-field
- Data High precision data with 1.4 M $\nu_\mu\text{-}\text{CC}$

Xinchun Tian (USC, Columbia)

The NOMAD Detector

Xinchun Tian (USC, Columbia)

What we are looking for - $\mu^-\pi^++2$ clusters

Xinchun Tian (USC, Columbia)

NOMAD@NuFact 2013

082213 9 / 20

What we are looking for - $\mu^-\pi^+$ + 1 cluster + 1 V_0

Xinchun Tian (USC, Columbia)

NOMAD@NuFact 2013

082213 10 / 20

The analysis essentials

- The events passing the preselection were subjected to multi-variant analysis
- The background is constrained using the control (background) region
- Mockdata tests validate the whole analysis chain
- Two independent, Likelihood and Neural-Network analysis yield very consistent results

Mockdata Excercise

Mockdata test also shows that the acceptance and resolution smearing correction work.

Xinchun Tian (USC, Columbia)

Actual Data Analysis - LH/NN distribution

Note: We do not apply a cut on $M_{\gamma\gamma}$ or $M_{\pi^+\gamma\gamma}$

Xinchun Tian (USC, Columbia)

Kinematics in the signal region - MC agrees with Data reasonably well and consistent with ${\rm Coh}\rho^+$

Systematics

Total overall systematic error - $\pm 3.9\%$

- Background normalization $\pm 1.6\%$
 - Dominated by CC-DIS, use the control region in LH to get a normalization factor and error
- Absolute normalization $\pm 2.5\%$
 - From inclusive CC cross section measurement
- Efficiency $\pm 2.5\%$
 - Mockdata study < 1%
 - Vary LH-cuts, difference in LH .vs. NN $\pm 1.6\%$
 - Vary the MC-parameters $\pm 2.5\%$

Measurement of $N({ m Coh} ho^+)/N_{ m CC}$ as a function of $E_{ u}$

Xinchun Tian (USC, Columbia)

Measurement of $\sigma_{{\rm Coh} ho^+}$ as a function of $E_{ u}$

NOMAD data favor the model with R = 0, i.e. there is little longitudinal contribution in Coh ρ production

Xinchun Tian (USC, Columbia)

Sensitivity Study of Coherent-Meson Production in a Fine Grain Straw Tube Tracker (STT) - the proposed LBNE Near Detector

• The LBNE ND will have a much a higher resolution and statistics $(\times 50)$ than NOMAD, but lower energy $(\sim 1/4)$

Coherent Meson Production Study at LBNE

The proposed LBNE Near Detector - STT (Built on the NOMAD experience)

- Determination of the beam flux at the Near Site and the measurement of ν_e-appearance backgrounds (Primary purpose)
- Precision Standard Model neutrino physics measurements, such as precise measurement of the weak mixing angle

Performance Metric	STT
Tracking Detector Mass	7 tons
Vertex Resolution	0.1 mm
Angular Resolution	2 mrad
E _e Resolution	5%
E_{μ} Resolution	5%
$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	YES
$\nu_e/\bar{\nu}_e$ ID	YES
$NC\pi^0/CCe$ Rejection	0.1%
$NC\gamma/CCe$ Rejection	0.2%
$CC\mu/CCe$ Rejection	0.01%

Conclusion

Conclusion

- We have conducted a measurement of Coherent ρ^+ production using NOMAD data a clear Coherent ρ^+ signal is observed
 - We observe 4318.8±307.4 (stat.)±168.4 (syst.) fully corrected Coherent ρ^+ events
 - The rate with respect to u_{μ} -CC events (1.44 M) is (3.00 \pm 0.24)imes10⁻³
 - $R(Coh\rho^0/Coh\rho^+) = (634.5 \pm 146.3)/(4318.8 \pm 350.5) = 0.147 \pm 0.036$
- The observed rate and kinematics are consistent with theory (CVC and VMD)
- The analysis is largely data-driven the backgrounds are constrained using control samples
- The knowledge from NOMAD analysis of the coherent meson studies is applicable on LBNE ND studies which will have a much a higher resolution and statistics, but lower energy, than NOMAD

Xinchun Tian (USC, Columbia)

NOMAD@NuFact 2013

082213 20 / 20

Cross Secton

$$\frac{d^3\sigma(\nu_{\mu}\mathcal{A}\to\mu^-\rho^+\mathcal{A})}{dQ^2d\nu dt} = \frac{G_F^2}{4\pi^2}\frac{f_{\rho}^2}{1-\epsilon}\frac{|q|}{E_{\nu}^2}\left[\frac{Q}{Q^2+m_{\rho}^2}\right]^2(1+\epsilon R)\left[\frac{d\sigma^T(\rho^+\mathcal{A}\to\rho^+\mathcal{A})}{dt}\right] \tag{1}$$

where G_F is the weak coupling constant, $Q^2 = -q^2 = -(k - k')^2$, $t = (p - p')^2$, $\nu = E_{\nu} - E_{\mu}$, $x = Q^2/(2\nu M)$, $y = \nu/E_{\nu}$, g_{ρ} is related to the ρ form-factor, the polarization parameter $\epsilon = \frac{4E_{\nu}E_{\mu}-Q^2}{4E_{\nu}E_{\mu}+Q^2+2\nu^2}$, and $R = \frac{d\sigma^L/dt}{d\sigma^T/dt}$ with σ^L and σ^T as the longitudinal and transverse ρ -nucleus cross sections. The ρ form factor f_{ρ} is related to the corresponding factor in charged-lepton scattering, $f_{\rho}^{\pm} = f_{\rho 0}^{\gamma} \sqrt{2} \cos \theta_C$, θ_C is the Cabibbo angle and $f_{\rho}^{\gamma} = m_{\rho}^2/\gamma_{\rho}$ is the coupling of ρ^0 to photon $(\gamma_{\rho}^2/4\pi = 2.4 \pm 0.1)$.

Following the Rein-Sehgal model of meson-nucleus absorption,

$$\frac{d\sigma^{T}(\rho^{+}\mathcal{A} \to \rho^{+}\mathcal{A})}{dt} = \frac{\mathcal{A}^{2}}{16\pi}\sigma^{2}(hn)exp(-b|t|)F_{abs}$$
(2)

where $\sigma(hn)$ is the 'hadron-nucleon' cross-section with the energy of the hadron $\simeq \nu$, $b = R^2/3$ such that $R = R_0 \mathcal{A}^{1/3}$, with $R_0 = 1.12 fm$ and the absorption factor $F_{abs} = 0.47 \pm 0.03$.

Xinchun Tian (USC, Columbia)

NOMAD@NuFact 2013

082213 21 / 20

The SPS Beam

ν	$ u/ u_{\mu} $	
$ u_{\mu}$	1.0	
$ar{ u}_{\mu}$	0.025	
ν_e	0.015	
$\bar{\nu}_e$	0.0015	

Xinchun Tian (USC, Columbia)

MC

- Total ν_{μ} -CC is normalized to 1.44 M
- QE is normalized to 33 k
- Resonance is normalized to 43 k (\sim 15% error)
- Coh π^+ is normalized to 10 k (${\sim}25\%$ error)

MC

• Deep Inelastic Scattering (DIS)

- Modelled with the help of modified LEPTO 6.1 package
- Production of all zoo of hadrons is simulated with help of JETSET 7.4
- Structure functions are calculated for LO GRV 98 pdf according A. Bodek prescriptions
- Quasi-Elastic scattering (QE)
 - Based on the Smith-Moniz approach
 - The vector form-factors F_V and F_M are supposed to be well known (the GKex(05) parametrization)
 - The axial form-factor has the dipole form $F_A(Q^2) = F_A(0)[1 + Q^2/M_A^2]^{-2}$

• Resonance/single pion production

- Based on ReinSehgal (RS) model
- Set of 18th baryon resonances with masses below 2 GeV as in RS but with all relevant parameters updated according to the most recent PDG
- Factors which were estimated in RS numerically are corrected by using the new data and a more accurate integration algorithm
- Coherent pion production
 - Based on Rein-Sehgal (RS) model
- Final state interactions
 - Modelled with the help of DPMJET package, based on the Formation Zone Intranuclear Cascade model

Xinchun Tian (USC, Columbia)