) M. de Boer / O. Gi

Neutrino mass hierarchy with ORCA

Thomas Eberl on behalf of the KM3NeT collaboration

Beijing, August 21st 2013 International Workshop on Neutrino Factories, Super Beams and Beta Beams

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

NATURWISSENSCHAFTLICHE FAKULTÄT

Particle Physics in the depth of the Mediterranean Sea ...

Artist's view of the ANTARES neutrino telescope: ① Nuclear Inst. and Methods in Physics Research, A 656 (2011) pp. 11-38

... with megaton water Cherenkov detectors

9:0

Artist's view of the ANTARES neutrino telescope: ① Nuclear Inst. and Methods in Physics Research, A 656 (2011) pp. 11-38

Measuring neutrinos with neutrino telescopes

- Neutrino telescopes in water or ice: large 3D arrays of PMTs measure Cherenkov light from secondary charged particles, allow reconstruction of neutrino direction and energy
- Main focus on neutrino energies > O(1 TeV)
- Goal: Discover neutrino fluxes from astrophysical sources
- Current instruments, ANTARES and IceCube DeepCore sensitive down to ~10 GeV

Production of Atmospheric Neutrinos

Oscillations of Atmospheric Neutrinos

- Neutrinos oscillating over one Earth diameter have a v_{μ} survival minimum at ~25 GeV
 - Hierarchy-dependent matter effects below ~10-20 GeV
- Neutrinos are available over a wide range of energies and baselines
 - Comparison of observations from different baselines and energies is crucial for controlling systematics
 - Essentially, a generalization of the updown ratio approach

First Neutrino Oscillation Results from Neutrino Telescopes

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Vacuum neutrino oscillations:

- v_{μ} disappearance at ~25 GeV (Earth diameter),
- event reconstruction down to $E_v \sim 10 \text{ GeV}$

Oscillation parameters measured with atmospheric muon neutrinos:

IceCube: arXiv:1305.3909 ANTARES: Phys.Lett. B714 (2012)

→ demonstrates potential of megaton water / ice Cherenkov detectors

Appearance and survival probability of upgoing muon neutrinos

- neutrinos, **normal** hierarchy
- earth density profile: PREM
- oscillation parameters from Fogli, PRD 86(1), p.013012, 2012

Appearance and survival probability of upgoing muon neutrinos

- neutrinos, **inverted** hierarchy
- earth density profile: PREM
- oscillation parameters from Fogli, PRD 86(1), p.013012, 2012

Appearance and survival probability of upgoing muon antineutrinos

- antineutrinos, **normal** hierarchy
- earth density profile: PREM
- oscillation parameters from Fogli, PRD 86(1), p.013012, 2012

Appearance and survival probability of upgoing muon antineutrinos

- antineutrinos, inverted hierarchy
- earth density profile: PREM
- oscillation parameters from Fogli, PRD 86(1), p.013012, 2012

MSW: resonant neutrino oscillations in matter

- 3-flavour oscillations of $v_e <-> v_\mu$ in matter show resonance for neutrinos in normal hierarchy and antineutrinos in inverted hierarchy
- Effect in principle usable to determine the sign of ∆m₃₁²,
 i.e. the neutrino mass hierachy!
- Resonance condition in Earth: $E_{\nu} \approx 30 \text{ GeV}/\rho[\text{g cm}^{-3}]$ i.e. for neutrino energies $E_{\nu} \sim 3-10 \text{ GeV}$
- Note however: effect cancels if neutrinos and anti-neutrinos have equal fluxes and cross sections, and if the detector cannot distinguish μ⁺ and μ⁻.

Neutrino-nucleon cross sections

Formaggio, Zeller, Rev. Mod. Phys., 84(3), pp.1307–1341 (2012)

Neutrino

and

Antineutrino

cross sections on the nucleon are different!

Atmospheric neutrino fluxes

ORCA and KM3NeT

- ORCA (Oscillations with Cosmics in the Abyss) is an ongoing feasibility study towards a measurement of the neutrino mass hierarchy within the KM3NeT collaboration.
- KM3NeT will be the future very large volume (several cubic kilometer) neutrino telescope in the Mediterranean Sea.
- Start-up funds (40M€) are available for phase-1 and the construction has started with deployment and hardware tests.

km3net.or

Artistic view of 1 of several building blocks

Th. Eberl: ORCA, NUFACT '13, 21.8.2013

ORCA: simulation detector layout

Note: This is just a (scalable) example configuration

- instrumented volume: 1.75Mton sea water
- 50 detection units (strings)
- 20 optical modules (OM) each
- height 114m, diameter 140m
- 20m (mean) horizontal string distance
- 6m vertical distance between OMs

KM3NeT OM design:

- 17-inch glass sphere
- 31 3-inch PMTs / OM (19 ↓,12 ♠)
- photo cathode area ~3x10" PMTs
- directionality

Detector simulation

Muon reconstruction: direction

ANGULAR RESOLUTION

EFFECTIVE VOLUME

better than 10° for $E_v \ge 5 \text{ GeV}$

almost flat for $E_v \ge 8 \text{ GeV}$

Muon reconstruction: energy

- Muon energy inferred from measurement of track length
- Median per energy bin, color band shows 1σ range
- Muon energy estimate most reliable for fully contained tracks
- Estimation of shower energy (inelasticity) in progress

VERTEX CONTAINED

TRACK+VERTEX CONTAINED

Muon event rates in ORCA for 1 year

- contained events, 10 PMT hits from muon
- 100% tagging efficiency (upgoing v_{μ} + anti- v_{μ} CC)
- no atmospheric muon background

Th. Eberl: ORCA, NUFACT '13, 21.8.2013

Experimental Signature of Mass Hierarchy

- Binned counting experiment in energy and zenith angle plane
- Compare difference in expected number of events for normal vs. inverted hierarchy due to mass effects
- Useful metric is significance estimate of Akhmedov, Razzaque & Smirnov [arXiv:1205.7071]

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}}$$

$$i = \cos(zenith)$$

 $i = energy$

Experimental Signature of Mass Hierarchy

- Binned counting experiment in energy and zenith angle plane
- Compare difference in expected number of events for normal vs. inverted hierarchy due to mass effects
- Useful metric is significance estimate of Akhmedov, Razzaque & Smirnov [arXiv:1205.7071]

$$S_{tot} = \sqrt{\sum_{ij} \frac{(N_{ij}^{IH} - N_{ij}^{NH})^2}{N_{ij}^{NH}}}$$

Hierarchy asymmetry with example detector resolution

- energy dependent angular smearing due to neutrino interaction kinematics
- average angular resolution on muon:
 5 degrees
- energy resolution:
 1GeV (muon) + 0.2 * E_v

 $(N_{_{\rm L}}^{\rm IH}$ - $N_{_{\rm H}}^{\rm NH})/(N_{_{\rm L}}^{\rm NH})^{1/2}$ [ORCA 3 yrs] (Fogli) ∑90 20 18 0.1 preliminary 0.08 ш 16 0.06 0.04 14 0.02 12 0 10 -0.028 -0.046 -0.06 4 -0.082 -0.1 -0.6 -0.8 -0.4-0.2 0 -1 $\cos(\theta_{z})$

Pseudo-experiment generation

- assume rate of muon-like events is Poisson-distributed in each bin
- mean μ given by calculated rate
- log-likelihood ratio with *k* muon-like events in bin *i*:

$$\rho_i = \ln\left(\frac{(\mu_{i,NH})^k \exp(-\mu_{i,NH})}{k!}\right) - \ln\left(\frac{(\mu_{i,IH})^k \exp(-\mu_{i,IH})}{k!}\right)$$

• total log-likelihood given by sum over bins

$$\rho = \sum_{\text{bins } i} \rho_i$$

• repeat this pseudo-experiment many times

Log-likelihood ratio distribution

ass hierarchy at frequires frequires

40

20

250

-40

-30 -20 -10 0

20 30 40 50

log likelihood ratio

10

• Improved determination of Δm_{23}^2 and θ_{23} seems possible

27

Preliminary results of toy analysis

- Neutrino vertex in detector volume, true μ direction, $\sigma(E_{\nu}) = 0.2E_{\nu}$
- Distribution of log-likelihood ratio NH/IH for toy experiments
- Experimental determination of mass hierarchy at 4-5σ level requires ~20 Mton-years

Significance of mass hierarchy determination

Results of a preliminary study without reconstruction effects

Assumptions:

- Perfect muon zenith angle resolution
- True neutrino vertex contained
- 15 PMT hits (from Geant4 simulation)

(1) $2.5\sigma \rightarrow 4\sigma$ in 5 years with reference detector, strong dependence on reconstruction performance

significance E =1-100 GeV # sigmas (50% Probability) 5 years with 1.75 Mton =30.0% 8 10 6 16 18 20

Summary and Outlook

- ORCA: feasibility study within KM3NeT towards neutrino mass hierarchy determination in progress.
- Fast progress by small number of (very) active participants, but no conclusion on feasibility yet.
- Development of reconstruction algorithms in progress.
- Evaluation of detector performance, backgrounds, flavor ID and systematics by means of toy-MC sensitivity study.
- Detector optimization studies have started.

Thank you for your attention!

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

NATURWISSENSCHAFTLICHE FAKULTÄT

Backup Slides

NATURWISSENSCHAFTLICHE FAKULTÄT

Earth Density Profile

• Preliminary Reference Earth Model

A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter., 25 (1981) 297-356

relevant neutrino energies: $E_{
u} \sim 3-10 \, {\rm GeV}$

A neutrino beam to ORCA?

F. Vissani (Paris Workshop & arXiv:1301.4577):

- The matter (MSW) effect indicates 6-8 GeV as optimal energy.
- A large enough oscillation phase dictates distances of 6000-8000 km as optimal.

use nu_mu beam ? (Fermilab \rightarrow Sicily: 7800 km)

J. Brunner (Paris Workshop & arXiv:1304.6230v2):

nu_e appearance at shorter baseline: a nu_mu beam from Protvino → ORCA ?

From preliminary studies: 10^{21} pot (3 yr) $\rightarrow 7\sigma$ (stats), 3σ with 3-4% systematics

(no assumption on energy reconstruction)

16

Impact of oscillation uncertainties

Hierarchy discrimination

Maximum difference for zenith = 130 deg at 7 GeV

Neutrino oscillations in vacuum

Muon track and vertex reconstruction

ANTARES-inspired reconstruction (Aart's strategy)

1) Muon track reconstruction and track length estimation (first/last emission point)

2) Identification of hits belonging to hadronic shower

3) Re-estimation of vertex position (assuming spherically expanding shower)

improved vertex identification improved track length estimate

The ANTARES neutrino telescope

Rate estimation

 Calculating number of events per bin N_{bin} in energy - zenith angle plane:

$$\frac{\mathrm{d}\,n(E,\cos(\theta_z))}{\mathrm{d}\,t} = 2\pi N_A\,\rho\,m_{\mathrm{mol}}^{-1}\,\Phi(E,\cos(\theta_z))\cdot\sigma(E)\cdot V_{\mathrm{eff}}(E)$$
$$N_{\mathrm{bin}} = \int_{E(low)}^{E(up)}\mathrm{d}\,E\int_{\cos(\theta_z)(low)}^{\cos(\theta_z)(up)}\mathrm{d}\cos(\theta_z)\,P_{i\to j}^H\cdot\frac{\mathrm{d}\,n(E,\cos(\theta_z))}{\mathrm{d}\,t}\Delta\,t$$

Neutrino-nucleon cross sections

Atmospheric neutrino fluxes

- Atmospheric neutrino flux table: $\Phi(E, \cos(\theta_z))$
 - Honda et al., Phys. Rev. D83, 123001 (2011)
 - data from: http://www.icrr.u-tokyo.ac.jp/~mhonda/nflx2011/index.html
 - table for Frejus, solar minimum, azimuth averaged

fig. S. Hallmann, B.Sc. thesis, ECAP 2013

Assumption: detector has a cylindrical shape

- D: detector diameter
- h: detector height
- R: average muon range

$$V = \frac{1}{2}hD_d^2 \arcsin\left(\sqrt{1 - \frac{R_\mu^2}{D_d^2}\sin^2\theta_Z}\right)\left(1 - \frac{R_\mu}{h}|\cos\theta_Z|\right)$$

formula from Albuquerque, Smoot, Phys. Rev. D64(5), 053008 (2001)

Effective volume for muon (anti-)neutrinos

- muon tracks fully contained in instrumented volume
- min. 10 hits on PMTs from muon

fig. S. Hallmann, B.Sc. thesis, ECAP 2013

Th. Eberl: ORCA, NUFACT '13, 21.8.2013