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Short Baseline Reactor Neutrino Oscillation
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The Daya Bay Experiment
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Daya Bay Calibration System

3 ’robots’ employed along 3 z-axes

1 Center of GdLS target volume

2 Edge of GdLS target volume

3 Middle of LS gamma catcher volume

3 sources in each robot (employed weekly)

1
68Ge (2×511 keV γ)

2
241Am13C (n) +60Co (1.17+1.33 MeV γ)

3 LED diffuser ball

Additional temporary sources

1 Gamma sources:
I 137Cs (0.662 MeV)
I 54Mn (0.835 MeV)
I 40K (1.461 MeV)

2 Neutron sources

I 241Am-9Be, 239Pu-13C

r = 1.775 m r = 0 r = 1.35 m
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Analyzed Data Sets

Two detector comparison [1202.6181]

� 90 days of data, Daya Bay near only

� NIM A 685 (2012), 78-97

First oscillation analysis [1203:1669]

� 55 days of data, 6 ADs near+far

� PRL 108 (2012), 171803

Improved oscillation analysis [1210.6327]

� 139 days of data, 6 ADs near+far

� CPC 37 (2013), 011001

Spectral Analysis

� 217 days complete 6 AD period

� 55% more statistics than CPC result
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Signal and Background Summary

Near Halls Far Hall

AD 1 AD 2 AD 3 AD 4 AD 5 AD 6

IBD candidates 101290 102519 92912 13964 13894 13731

DAQ live time (days) 191.001 189.645 189.779

Efficiency εµ · εm 0.7957 0.7927 0.8282 0.9577 0.9568 0.9566

Accidentals (per day)∗ 9.54±0.03 9.36±0.03 7.44±0.02 2.96±0.01 2.92±0.01 2.87±0.01

Fast-neutron (per day)∗ 0.92±0.46 0.62±0.31 0.04±0.02
9Li/8He (per day)∗ 2.40±0.86 1.2±0.63 0.22±0.06

Am-C corr. (per day)∗ 0.26±0.12
13C16O backgr. (per day)∗ 0.08±0.04 0.07±0.04 0.05±0.03 0.04±0.02 0.04±0.02 0.04±0.02

IBD rate (per day)∗ 653.30±2.31 664.15±2.33 581.97±2.07 73.31±0.66 73.03±0.66 72.20± 0.66

∗Background and IBD rates were corrected for the efficiency
of the muon veto and multiplicity cuts εµ · εm

Collected more than 300k antineutrino interactions

� Consistent rates for side-by-side detectors (expected AD1/AD2 ratio ∼ 0.981)

� Uncertainties still dominated by Far Hall statistics ∼ 0.9%
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Antineutrino Rate vs Time
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Detected rate strongly correlated with reactor flux expectations

� Predicted Rate assumes no oscillation
� Absolute normalization determined by fit to data
� Normalization within a few percent of expectations
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Rate-Only Oscillation Results
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sin2 2θ13 = 0.089 ± 0.009

� Uncertainty reduced by statistics of complete 6 AD data period

� Standard χ2 approach: χ2/NDoF = 0.48/4

� |∆m2
ee | constrained by MINOS: |∆m2

µµ| = 2.41+0.09
−0.10 · 10−3eV2 [PRL 110, 251801 (2013)]

� Far vs. near relative measurement: absolute rate not constrained

� Consistent results from independent analyses, different reactor flux models
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Spectral Information

Rate-only analysis: previously reported + updated here
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3 Fewer systematic uncertainties

7 Less sensitive, unable to constrain ∆m2
ee

Rate+spectrum analysis: to be presented here
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3 Each energy bin independent oscillation measurement, ∆m2
ee

7 Requires detailed understanding of detector energy response
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Overview of the Energy Response Model

Energy Losses in Acrylic 

Charge collection efficiency 

decreases with visible light

Readout ElectronicsEnergy Resolution

Quenching effects

Scintillator Response

Cherenkov radiation

Acrylic vessels non-scintillating

Induce shape distortion 

Correction from MC

Light production 

Light collection

PMT/electronics response

Particle 

Energy Etrue

Energy Deposited

in Scintillator Edep

Energy Converted 

to Visible Light Evis

Reconstructed 

Energy Erec

Model maps reconstructed energy Erec to true kinetic energy Etrue

� Minimal impact on oscillation measurement

� Crucial for measurement of reactor spectra
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Overview of the Energy Response Model

Energy Losses in Acrylic 

Charge collection efficiency 

decreases with visible light

Readout ElectronicsEnergy Resolution

Quenching effects

Scintillator Response

Cherenkov radiation

Acrylic vessels non-scintillating

Induce shape distortion 

Correction from MC

Light production 

Light collection

PMT/electronics response

Two major sources 

of non-linearity.

Difficult to decouple !

Particle 

Energy Etrue

Energy Deposited

in Scintillator Edep

Energy Converted 

to Visible Light Evis

Reconstructed 

Energy Erec

Total effective non-linearity f

f =
Erec

Etrue
=

Evis

Etrue
×
Erec

Evis
= fscint(Etrue) × felec(Evis)

1 Scintillator non-linearity

2 Electronics non-linearity
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Scintillator Response Model

Electron response

2 parameterizations to model quenching effects and Cherenkov radiation:

1 3-parameter purely empirical model:
Evis

Etrue
=

1 + p3 · Etrue

1 + p1 · e−p2·Etrue

2 Semi-emp. model based on Birks’ law:
Evis

Etrue
= fq(Etrue; kB) + kC · fc(Etrue)

kB : Birks’ constant
kC : Cherenkov contribution

Gammas and positrons

� Gammas connected to electron model
through MC:

Eγvis =

∫
E e−

vis

(
E e−

true

)
·
dN

dE

(
E e−

true

)
dE e−

true

� Positrons assumed to interact with the
scintillator in same way as electrons:

E e+

vis = E e−
vis + 2 · Eγvis(0.511 MeV) 0 1 2 3 4 5

-510

-410

-310

Energy of primary e+/e– [MeV]

Δ
N

/Δ
E
  

[M
eV

-1
]

Compton scattering
e–

e+
Pair production

Photoelectric effe
ct

n capture

on H n capture 

on C

60Co

10 / 22



Electronics Non-Linearity Model

PMT readout electronics introduces additional biases

Electronics does not fully capture
late secondary hits

⇒ Slow scintillation component
missed at high energies

⇒ Charge collection efficiency
decreases with visible light 0 50 100 150 200 250
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Parameterization

� Interplay of scintillation light time profile and electronics charge collection
⇒ Can’t be easily calibrated out on single channel level
⇒ Use effective model as a function of total visible energy

� 2 empirical parameterizations: exponential and quadratic
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Constraining the Non-Linearity Parameters

Special Calibration Source

Regular Calibration Source

Singles Spectrum
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Full detector calibration data

1 Monoenergetic gamma lines from various sources

I Radioactive calibration sources, employed regularly: 68Ge, 60Co, 241Am13C

and during special calibration periods: 137Cs, 54Mn, 40K, 241Am9Be, Pu13C
I Singles and correlated spectra in regular physics runs (40K, 208Tl, n capture on H)

2 Continuous spectrum from 12B produced by muon spallation inside the scintillator

Standalone measurements

� Scintillator quenching measurements using neutron beams and Compton electrons

� Calibration of readout electronics with flash ADC

12 / 22



More Continuous β + γ Spectra
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Additional spectra from 212Bi, 214Bi and 208Tl decays

� Sizable theoretical uncertainties from 1st forbidden non-unique beta decays

⇒ 212Bi, 214Bi and 208Tl spectra only utilized to cross-check results
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Final Positron Energy Non-Linearity Response

Nominal Model + 68% CL
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Several validated models

� Constructed based on different parameterizations/weighting of data constraints

� All models in good agreement with detector calibration data

� Resulting positron non-linearity curves consistent within ∼ 1.5% uncertainty

Combination of 5 models to conservatively estimate uncertainty

� Models selected so that
1 Correlations are minimized

2 Remaining validated curves+uncertainties are contained in 68% C.L.

� Choice of nominal model has negligible impact on oscillation result
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Energy Losses in Acrylic Vessels
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Non-scintillating inner acrylic vessels distort energy spectrum

� Kinetic energy of IBD positrons near acrylic vessels not fully detected

� Annihilation gammas with longer range can also deposit energy in vessels

� Introduces shape distortion at ∼ 1 MeV

� 2D distortion matrix from MC to correct predicted positron energy spectrum
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Energy Resolution Model

Calibration Sources
Spallation Neutrons

Gammas from

IBD Neutrons

Resolution Model

Alphas
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� Functional form (NIM 193, 549 (1982)):

σE

E
=

√
a2 +

b2

E
+

c2

E2

� Contributions from:
1 a : Spacial/temp. resolution (∝ E)

2 b : Photon statistics (∝
√
E)

3 c : Dark noise (const.)

Calibrated primarily using monoenergetic gamma sources

1 Radioactive calibration sources placed at the detector center

2 Additional data from IBD and spallation neutrons, uniformly distributed in LS

3 Alpha source data used to cross-check result
⇒ Larger uncertainties due to different response from readout electronics
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IBD Prompt Spectra
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Rate+Spectra Oscillation Results
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sin2 2θ13 = 0.090+0.008
−0.009

|∆m2
ee | = 2.59+0.19

−0.20 · 10−3eV2

χ2/NDoF = 162.7/153

Strong confirmation of oscillation-interpretation of observed ν̄e deficit

Normal MH ∆m2
32 Inverted MH ∆m2

32
[10−3eV2] [10−3eV2]

From Daya Bay ∆m2
ee 2.54+0.19

−0.20 −2.64+0.19
−0.20

From MINOS ∆m2
µµ 2.37+0.09

−0.09 −2.41+0.12
−0.09

[João, NuFact2013]
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Pure Spectral Analysis
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χ2/NDoF = 161.2/148

θ13 = 0 can be excluded at > 3σ from spectral information alone

� For each AD, total event prediction fixed to observed data:

1 θ13 free-floating: χ
2
/NDoF = 161.2/148

2 θ13 = 0: χ
2
/NDoF = 178.5/146

⇒ ∆χ2/NDoF = 17.3/2, corresponding to p = 1.75 · 10−4
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Sensitivity Projection

Installation
of AD 7+8

0 200 400 600 800 1000 1200 1400 1600

13θ22
E
rr

or
 o

f 
si
n

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Rate Only

Rate+Spectra

PRL 108 171803

CPC 37 011001

]2
eV

-3
[1

0
ee2

m
Δ

E
rr

o
r 

o
f

0

0.05

0.1

0.15

0.2

0.25

This Analysis

Time [days]
0 200 400 600 800 1000 1200 1400 1600

Time [days]

Rate+Spectra

This Analysis

MINOS 1-σ on Δm2
µµ

Now Now

Sensitivity still dominated by statistics

� Statistics contribute ∼ 73% (∼ 65%) to total uncertainty in sin2 2θ13 (|∆m2
ee |)

� Major systematics:
θ13: Reactor model, relative+absolute energy and relative efficiencies

|∆m2
ee |: Relative energy model, relative efficiencies and backgrounds

� Precision of mass splitting measurement closing in on results from µ flavor sector
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Global Comparison of θ13 Measurements
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Summary

First direct measurement of the ν̄e mass-squared difference |∆m2
ee | from

relative deficit and spectral distortion observed between 3 far and 3 near detectors

|∆m2
ee | = (2.59 +0.19

−0.20)×10−3eV2

Most precise estimate of mixing angle θ13 to date with 217 days of data

sin2 2θ13 = 0.090 +0.008
−0.009

Expect more from Daya Bay soon:

� Measurement of the absolute reactor flux, addressing the reactor anomaly

� Constraints on non-standard neutrino models

� Significantly increased precision: 8 detectors, more than 2 years of data
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Back Up
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A Comment on the Mass Splitting

Short-baseline reactor experiments insensitive to mass hierarchy

� Cannot discriminate 2 frequencies contributing to oscillation: ∆m2
31, ∆m2

32

� One effective oscillation frequency ∆m2
ee is measured:

Pν̄e→ν̄e = 1− sin2 2θ13 sin2

(
∆m2

ee
L

4E

)
− sin2 2θ12 cos4 2θ13 sin2

(
∆m2

21

L

4E

)
sin2(∆m2

ee
L

4E ) ≡ cos2
θ12 sin2(∆m2

31
L

4E )

+ sin2
θ12 sin2(∆m2

32
L

4E )

Result easily related to actual mass splitting

� Normal hierarchy (+), inverted hierarchy (−):

|∆m2
ee | ≈ |∆m2

32| ± 5.21×10−3eV2

� Hierarchy discrimination requires ∼ 2% precision on both ∆m2
ee and ∆m2

µµ
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An International Effort: 230 Collaborators from 40 Institutions

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa

State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer

Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati,

Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William

& Mary, Yale

Europe (2)

Charles University, JINR Dubna

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic,

ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong

Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ.,

USTC, Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of

Hong Kong, Univ. of Hong Kong, Na2onal Chiao Tung Univ.,

Na2onal Taiwan Univ., Na2onal United Univ.
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Antineutrino Detection via Inverse Beta Decay

Reconstructed Energy [MeV]
0 2 4 6 8 10 12

Prompt Signal

Reconstructed Energy [MeV]
0 2 4 6 8 10 12

Delayed Signal

Prompt+delayed coincidence provides distinctive signature

ν̄e + p → e+ + n prompt

+ p τ≈200 µs−−−−−−→ D + γ (2.2 MeV)

+Gd τ≈28 µs−−−−−−→ Gd∗ → Gd + nγ (8 MeV) delayed

� Neutrino energy: Eν̄e ≈ Te+ + Tn + (mn −mp) + me+ ≈ Te+ + 1.8 MeV

� Higher energy and shorter capture time on Gd improve background rejection
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Antineutrino Detector (AD) Design

8 functionally identical detectors
reduce systematic uncertainties

3 zone cylindrical vessels

Liquid Mass Function

Inner
acrylic

Gd-doped
liquid scint.

20 t Antineutrino
target

Outer
acrylic

Liquid
scintillator

20 t Gamma
catcher

Stainless
steel

Mineral oil 40 t Radiation
shielding

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield

and flatten detector response
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Antineutrino (IBD) Selection

Use IBD prompt+delayed coincidence signal

1 Reject spontaneous PMT light emission
(”flashers”)

2 Prompt positron:
0.7 MeV < Ep < 12 MeV

3 Delayed neutron:
6.0 MeV < Ed < 12 MeV

4 Neutron capture time:
1 µs < ∆t < 200 µs

5 Muon veto:
I Water pool muon (>12 hit PMTs):

Reject [−2µs, 600µs]

I AD muon (>20 MeV):
Reject [−2µs, 1400µs]

I AD shower muon (>2.5 GeV):
Reject [−2µs, 0.4s]

6 Multiplicity:
I No additional prompt-like signal

400µs before delayed neutron
I No delayed-like signal

200µs after delayed neutron
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Summary of Uncertainties

Detector

Efficiency Correlated Uncorrelated

Target Protons 0.47% 0.03%

� Only uncorrelated
uncertainties
relevant to near/far
oscillation analysis

� Largest systematics
smaller than far site
statistics (∼ 1%)

Flasher cut 99.98% 0.01% 0.01%
Delayed energy cut 90.9% 0.6% 0.12%
Prompt energy cut 99.88% 0.10% 0.01%
Multiplicity cut 0.02% <0.01%
Capture time cut 98.6% 0.12% 0.01%
Gd capture ratio 83.8% 0.8% <0.1%
Spill-in 105.0% 1.5% 0.02%
Livetime 100.0% 0.002% <0.01%

Combined 78.8% 1.9% 0.2%

Reactor

Correlated Uncorrelated

Energy/fission 0.2% Power 0.5%

� Impact of
uncorrelated reactor
systematics reduced
by relative
measurement

IBD/fission 3% Fission fraction 0.6%
Spent fuel 0.3%

Combined 3% Combined 0.8%
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Reactor Flux Models
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Event Rate Prediction From New/Old Model

Daya Bay

Ling Ao

Far Hall

Ratio of ν̄e from isotope [%]

235U 238U 239Pu 241Pu

AD 1 63.3 12.2 19.5 4.8
AD 2 63.3 12.2 19.5 4.8
AD 3 61.0 12.5 21.5 4.9
AD 4 61.5 12.4 21.5 4.9
AD 5 61.5 12.4 21.5 4.9
AD 6 61.5 12.4 21.5 4.9

Flux model has negligible impact on oscillation measurement

� Flux from each reactor used to predict IBDs at each detector

1 New model:
I P. Huber, Phys. Rev. C84, 024617 (2011),
I T. Mueller et al., Phys. Rev. C83, 054615 (2011)

2 Old model:
I A. A. Hahn et al., Phys Rev Lett. B218, 365 (1989)
I P. Vogel et al. Phys. Rev. C24, 1543 (1981)
I K. Schreckenbach et al., Phys. Lett. B160, 325 (1985)
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Construct Energy Response Model from Calibration Data

3 Basic Approaches

1 Method 1
I No constraints on scintillation model from bench data
I Any combination of parameterizations for scintillator and electronics
I All parameters determined by simultaneous fit to 12B and gamma data
I Cross-check with remaining 3 continuous β + γ spectra

2 Method 2
I Semi-empirical model based on Birks’ law quenching for scintillation response
I Birks constant and Cherenkov contribution constrained by bench measurements
I Electronics response from quadratic fit to gamma data
I Cross-check with all 4 continuous β + γ spectra

3 Method 3
I Semi-empirical model for scintillation response
I Birks constant constrained by bench measurements
I Cherenkov contribution and electronics from exponential fit to all 4 β + γ spectra
I Cross-check with gamma data

Comparison of best fit models

� 12 models based on 3 basic methods with different weighting of input data

� All models in good agreement with AD calibration data

� Resulting positron non-linearity curves consistent within ∼ 1.5% uncertainty

31 / 22



Three Neutrino Oscillation: PMNS Matrix

m2

Inverted hierarchy

ν3

?

ν1

ν2

∆m2
atm

∆m2
sol

Normal hierarchy

ν1

ν2

ν3

?
∆m2

atm

∆m2
sol

νe νµ ντ

Weak and mass
eigenstates need not
correspond:

1 How they interact

2 How they propagate

|να〉 =
3∑

i=1

Uα,i |νi 〉

θ13 only recently well established by Daya Bay

U =

 1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

  cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13

  cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


� θ23 ∼ 45◦ established through atmosperic+accelerator experiments:

possibly maximal
� θ12 ∼ 34◦ established through solar experiments and KamLAND:

large but not maximal

α = e, µ, τ
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The Daya Bay Strategy

Relative measurement with 8 functionally identical detectors

� Absolute reactor flux single largest uncertainty in previous measurements

Cancels in near/far ratio:
Nf

Nn
=

(
Np,f

Np,n

)(
Ln

Lf

)2 ( εf

εn

)(
Psur(E , Lf)

Psur(E , Ln)

)

Baseline optimization

� Detector locations optimized to
known parameter space of |∆m2

ee |
� Far site maximizes term

dependent on sin2 2θ13 Double Chooz

RENO

Daya Bay

L [km]

P
ee

0 0.5 1 1.5 2 2.5 3

0.9

0.95

1

Go strong, big and deep!

Reactor [GWth] Target [t] Depth [m.w.e]

Double Chooz 8.6 16 (2×8) 300, 120 (far, near)
RENO 16.5 32 (2×16) 450, 120
Daya Bay 17.4 160 (8×20) 860, 250

Lots of signal Little background
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Daya Bay: A Powerful Neutrino Source at an Ideal Location
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Mountains shield detectors
from cosmic ray background
Mountains shield detectors

from cosmic ray background

Entrance to Daya Bay
experiment tunnels

Entrance to Daya Bay
experiment tunnels

Daya Bay NPP
2× 2.9 GWth

Daya Bay NPP
2× 2.9 GWth Ling Ao I NPP

2× 2.9 GWth

Ling Ao I NPP
2× 2.9 GWth Ling Ao II NPP

2× 2.9 GWth

Ling Ao II NPP
2× 2.9 GWth

Among the top 5 most powerful reactor complexes in the world,
6 cores produce 17.4 GWth power, 35×1020 neutrinos per second
Among the top 5 most powerful reactor complexes in the world,

6 cores produce 17.4 GWth power, 35×1020 neutrinos per second


