Spectral Measurement of Electron Antineutrino Oscillation Amplitude and Frequency at Daya Bay

> Soeren Jetter Institute of High Energy Physics on behalf of the Daya Bay Collaboration

al a fait

International Workshop on Neutrino Factories, Super Beams and Beta Beams

> August 23, 2013 Beijing, China

Short Baseline Reactor Neutrino Oscillation

$heta_{13}$ revealed by deficit of reactor antineutrinos at ~ 2 km

1 Mixing angle θ_{13} governs overall size of $\bar{\nu_e}$ deficit 2 Effective mass squared difference $|\Delta m_{ee}^2|$ determines deficit dependence on L/EShort Baseline $P_{\bar{\nu_e} \to \bar{\nu_e}} = 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right)}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} = \frac{\cos^2 \theta_{12} \sin^2 (\Delta m_{31}^2 \frac{L}{4E})}{+ \sin^2 \theta_{12} \sin^2 (\Delta m_{32}^2 \frac{L}{4E})}$

The Daya Bay Experiment

Far Hall 1615 m from Ling Ao I 1985 m from Daya Bay 350 m overburden

Entrance

3 Underground Experimental Halls Ling Ao Near Hall 481 m from Ling Ao I 526 m from Ling Ao II 112 m overburden

Daya Bay Near Hall 363 m from Daya Bay 98 m overburden

Daya Bay Cores

Ling Ao II Cores

■ 17.4 GW_{th} power

8 operating detectors

160 t total target mass

Daya Bay Calibration System

3 'robots' employed along 3 z-axes

- 1 Center of GdLS target volume
- 2 Edge of GdLS target volume
- 3 Middle of LS gamma catcher volume

3 sources in each robot (employed weekly)

1 68 Ge (2×511 keV γ) 2 241 Am 13 C (n) $+^{60}$ Co (1.17+1.33 MeV γ) 3 LED diffuser ball

Additional temporary sources

2 Neutron sources

²⁴¹Am-⁹Be, ²³⁹Pu-¹³C

 $r = 1.775 \,\mathrm{m}$ r = 0 $r = 1.35 \,\mathrm{m}$

Analyzed Data Sets

Analyzed Data Sets

Signal and Background Summary

	Near Halls			Far Hall		
	AD 1	AD 2	AD 3	AD 4	AD 5	AD 6
IBD candidates	101290	102519	92912	13964	13894	13731
DAQ live time (days)	191	191.001			189.779	
Efficiency $\epsilon_{\mu} \cdot \epsilon_{m}$	0.7957	0.7927	0.8282	0.9577	0.9568	0.9566
Accidentals (per day)*	9.54±0.03	9.36±0.03	7.44±0.02	$2.96 {\pm} 0.01$	$2.92 {\pm} 0.01$	2.87±0.01
Fast-neutron (per day)*	0.92	±0.46	$0.62 {\pm} 0.31$		$0.04 {\pm} 0.02$	
⁹ Li/ ⁸ He (per day)*	2.40	±0.86	$1.2 {\pm} 0.63$		$0.22 {\pm} 0.06$	
Am-C corr. (per day)*		0.26				
$^{13}\mathrm{C}^{16}\mathrm{O}$ backgr. (per day)*	$0.08{\pm}0.04$	0.07±0.04	$0.05{\pm}0.03$	$0.04 {\pm} 0.02$	$0.04 {\pm} 0.02$	0.04±0.02
IBD rate (per day)*	$653.30{\pm}2.31$	$664.15 {\pm} 2.33$	$581.97 {\pm} 2.07$	$73.31 {\pm} 0.66$	$73.03 {\pm} 0.66$	72.20± 0.66

*Background and IBD rates were corrected for the efficiency of the muon veto and multiplicity cuts $\epsilon_{\mu} \cdot \epsilon_{m}$

Collected more than 300k antineutrino interactions

■ Consistent rates for side-by-side detectors (expected AD1/AD2 ratio ~ 0.981)

 \blacksquare Uncertainties still dominated by Far Hall statistics $\sim 0.9\%$

Antineutrino Rate vs Time

Detected rate strongly correlated with reactor flux expectations

- Predicted Rate assumes no oscillation
- Absolute normalization determined by fit to data
- Normalization within a few percent of expectations

Rate-Only Oscillation Results

 $\sin^2 2\theta_{13} = 0.089 \pm 0.009$

Uncertainty reduced by statistics of complete 6 AD data period

Standard
$$\chi^2$$
 approach: $\chi^2/N_{DoF} = 0.48/4$

- $|\Delta m_{ee}^2|$ constrained by MINOS: $|\Delta m_{\mu\mu}^2| = 2.41^{+0.09}_{-0.10} \cdot 10^{-3} \text{eV}^2$ [PRL 110, 251801 (2013)]
- Far vs. near relative measurement: absolute rate not constrained
- Consistent results from independent analyses, different reactor flux models

Spectral Information

Rate-only analysis: previously reported $+\ updated\ here$

$$\frac{N_{\text{far}}}{N_{\text{near}}} = \frac{N_{\text{protons,far}}}{N_{\text{protons,near}}} \frac{L_{\text{far}}^2}{L_{\text{near}}^2} \frac{\epsilon_{\text{far}}}{\epsilon_{\text{near}}} \frac{\int_{E_{\text{min}}}^{E_{\text{max}}} P_{ee}\left(E, L_{\text{far}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E) dE}{\int_{E_{\text{min}}}^{E_{\text{max}}} P_{ee}\left(E, L_{\text{near}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E) dE}$$

- ✓ Fewer systematic uncertainties
- **X** Less sensitive, unable to constrain Δm_{ee}^2

Spectral Information

Rate-only analysis: previously reported $+\ updated$ here

$$\frac{N_{\text{far}}}{N_{\text{near}}} = \frac{N_{\text{protons,far}}}{N_{\text{protons,near}}} \frac{L_{\text{far}}^2}{L_{\text{near}}^2} \frac{\epsilon_{\text{far}}}{\epsilon_{\text{near}}} \frac{\int_{E_{\text{min}}}^{E_{\text{max}}} P_{\text{ee}}\left(E, L_{\text{far}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E) \, dE}{\int_{E_{\text{min}}}^{E_{\text{max}}} P_{ee}\left(E, L_{\text{near}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E) \, dE}$$

✓ Fewer systematic uncertainties

X Less sensitive, unable to constrain Δm_{ee}^2

Rate+spectrum analysis: to be presented here

$$\frac{\frac{dN_{\text{far}}}{dE}}{\frac{dN_{\text{rear}}}{dE}} = \frac{N_{\text{protons,far}}}{N_{\text{protons,near}}} \frac{L_{\text{far}}^2}{L_{\text{near}}^2} \frac{\epsilon_{\text{far}}}{\epsilon_{\text{near}}} \frac{P_{ee}\left(E, L_{\text{far}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E)}{P_{ee}\left(E, L_{\text{near}}; \theta_{13}, \Delta m_{ee}^2\right) \sigma(E) \Phi(E)}$$

✓ Each energy bin independent oscillation measurement, Δm^2_{ee}

X Requires detailed understanding of detector energy response

Overview of the Energy Response Model

Model maps reconstructed energy $E_{\rm rec}$ to true kinetic energy $E_{\rm true}$

- Minimal impact on oscillation measurement
- Crucial for measurement of reactor spectra

Overview of the Energy Response Model

Total effective non-linearity f

$$f = \frac{E_{\text{rec}}}{E_{\text{true}}} = \frac{E_{\text{vis}}}{E_{\text{true}}} \times \frac{E_{\text{rec}}}{E_{\text{vis}}} = f_{\text{scint}}(E_{\text{true}}) \times f_{\text{elec}}(E_{\text{vis}})$$

$$1 \quad \text{Scintillator non-linearity} \qquad 1$$

$$2 \quad \text{Electronics non-linearity} \qquad 1$$

Scintillator Response Model

Electron response

2 parameterizations to model quenching effects and Cherenkov radiation:

1 3-parameter purely empirical model:

2 Semi-emp. model based on Birks' law:

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = \frac{1 + p_3 \cdot E_{true}}{1 + p_1 \cdot e^{-p_2 \cdot E_{\text{true}}}}$$

$$\frac{E_{\text{vis}}}{E_{\text{true}}} = f_q(E_{\text{true}}; k_B) + k_C \cdot f_c(E_{\text{true}})$$

$$\frac{k_B: \text{ Birks' constant}}{k_C: \text{ Cherenkov contribution}}$$

Gammas and positrons

 Gammas connected to electron model through MC:

$$E_{\rm vis}^{\gamma} = \int E_{\rm vis}^{e^-} \left(E_{\rm true}^{e^-} \right) \cdot \frac{dN}{dE} \left(E_{\rm true}^{e^-} \right) dE_{\rm true}^{e^-}$$

Positrons assumed to interact with the scintillator in same way as electrons:

$$E_{\text{vis}}^{e^+} = E_{\text{vis}}^{e^-} + 2 \cdot E_{\text{vis}}^{\gamma}(0.511 \,\text{MeV})$$

Electronics Non-Linearity Model

PMT readout electronics introduces additional biases

Electronics does not fully capture late secondary hits

- \Rightarrow Slow scintillation component missed at high energies
- ⇒ Charge collection efficiency decreases with visible light

Parameterization

Interplay of scintillation light time profile and electronics charge collection

- $\Rightarrow~$ Can't be easily calibrated out on single channel level
- \Rightarrow Use effective model as a function of total visible energy
- 2 empirical parameterizations: exponential and quadratic

Constraining the Non-Linearity Parameters

Full detector calibration data

1 Monoenergetic gamma lines from various sources

- Radioactive calibration sources, employed regularly: ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am¹³C and during special calibration periods: ¹³⁷Cs, ⁵⁴Mn, ⁴⁰K, ²⁴¹Am⁹Be, Pu¹³C
- Singles and correlated spectra in regular physics runs (⁴⁰K, ²⁰⁸Tl, n capture on H)
- 2 Continuous spectrum from 12 B produced by muon spallation inside the scintillator

Standalone measurements

Scintillator quenching measurements using neutron beams and Compton electrons

Calibration of readout electronics with flash ADC

More Continuous $\beta + \gamma$ Spectra

 \Rightarrow ²¹²Bi, ²¹⁴Bi and ²⁰⁸Tl spectra only utilized to cross-check results

Final Positron Energy Non-Linearity Response

Several validated models

- Constructed based on different parameterizations/weighting of data constraints
- All models in good agreement with detector calibration data
- \blacksquare Resulting positron non-linearity curves consistent within $\sim 1.5\%$ uncertainty

Combination of 5 models to conservatively estimate uncertainty

Models selected so that

- 1 Correlations are minimized
- 2 Remaining validated curves+uncertainties are contained in 68% C.L.
- Choice of nominal model has negligible impact on oscillation result

Energy Losses in Acrylic Vessels

Non-scintillating inner acrylic vessels distort energy spectrum

- Kinetic energy of IBD positrons near acrylic vessels not fully detected
- Annihilation gammas with longer range can also deposit energy in vessels
- Introduces shape distortion at $\sim 1 \, \text{MeV}$
- 2D distortion matrix from MC to correct predicted positron energy spectrum

Energy Resolution Model

Calibrated primarily using monoenergetic gamma sources

- 1 Radioactive calibration sources placed at the detector center
- 2 Additional data from IBD and spallation neutrons, uniformly distributed in LS
- 3 Alpha source data used to cross-check result
 - $\Rightarrow\,$ Larger uncertainties due to different response from readout electronics

IBD Prompt Spectra

Rate+Spectra Oscillation Results

Strong confirmation of oscillation-interpretation of observed $\bar{\nu_e}$ deficit

	Normal MH Δm^2_{32} [10 ⁻³ eV ²]	Inverted MH Δm^2_{32} [10 ⁻³ eV ²]
From Daya Bay Δm^2_{ee}	$2.54^{+0.19}_{-0.20}$	$-2.64\substack{+0.19\\-0.20}$
From MINOS $\Delta m^2_{\mu\mu}$ [João, NuFact2013]	$2.37^{+0.09}_{-0.09}$	$-2.41\substack{+0.12\\-0.09}$

Pure Spectral Analysis

 $\theta_{13} = 0$ can be excluded at $> 3\sigma$ from spectral information alone

For each AD, total event prediction fixed to observed data:

$$\begin{array}{cccc} \hline 1 & \theta_{13} \mbox{ free-floating:} & \chi^2/N_{\rm DoF} = 161.2/148 \\ \hline 2 & \theta_{13} = 0; & \chi^2/N_{\rm DoF} = 178.5/146 \\ \hline \Rightarrow & \Delta\chi^2/N_{\rm DoF} = 17.3/2, \mbox{ corresponding to } p = 1.75 \cdot 10^{-4} \end{array}$$

Sensitivity Projection

Sensitivity still dominated by statistics

Statistics contribute ~ 73% (~ 65%) to total uncertainty in $\sin^2 2\theta_{13}$ ($|\Delta m_{ee}^2|$)

Major systematics:

 $heta_{13}$: Reactor model, relative+absolute energy and relative efficiencies

- $|\Delta m^2_{ee}|:$ Relative energy model, relative efficiencies and backgrounds
- \blacksquare Precision of mass splitting measurement closing in on results from μ flavor sector

Global Comparison of θ_{13} Measurements

Summary

First direct measurement of the $\bar{\nu_e}$ mass-squared difference $|\Delta m_{ee}^2|$ from relative deficit and spectral distortion observed between 3 far and 3 near detectors

 $|\Delta m^2_{ee}| = (2.59^{+0.19}_{-0.20}) imes 10^{-3} {
m eV}^2$

Most precise estimate of mixing angle θ_{13} to date with 217 days of data

$$\sin^2 2\theta_{13} = 0.090 \substack{+0.008 \\ -0.009}$$

Expect more from Daya Bay soon:

- Measurement of the absolute reactor flux, addressing the reactor anomaly
- Constraints on non-standard neutrino models
- Significantly increased precision: 8 detectors, more than 2 years of data

Back Up

A Comment on the Mass Splitting

Short-baseline reactor experiments insensitive to mass hierarchy

Cannot discriminate 2 frequencies contributing to oscillation: Δm_{31}^2 , Δm_{32}^2

• One effective oscillation frequency Δm_{ee}^2 is measured:

$$P_{\nu_e \to \nu_e} = 1 - \frac{\sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E}\right)}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} - \frac{\sin^2 2\theta_{12} \cos^4 2\theta_{13} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E}\right)}{\sin^2 (\Delta m_{ee}^2 \frac{L}{4E})} = \frac{\cos^2 \theta_{12} \sin^2 (\Delta m_{31}^2 \frac{L}{4E})}{+\sin^2 \theta_{12} \sin^2 (\Delta m_{32}^2 \frac{L}{4E})}$$

Result easily related to actual mass splitting

■ Normal hierarchy (+), inverted hierarchy (-):

$$|\Delta m^2_{ee}| pprox |\Delta m^2_{32}| \pm 5.21{ imes}10^{-3}{
m eV}^2$$

 \blacksquare Hierarchy discrimination requires $\sim 2\%$ precision on both Δm^2_{ee} and $\Delta m^2_{\mu\mu}$

An International Effort: 230 Collaborators from 40 Institutions

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Marv. Yale

Europe (2)

Charles University, JINR Dubna

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, Na2onal Chiao Tung Univ., Na2onal Taiwan Univ., Na2onal United Univ.

Antineutrino Detection via Inverse Beta Decay

• Neutrino energy: $E_{\bar{\nu}_e} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \,\mathrm{MeV}$

Higher energy and shorter capture time on Gd improve background rejection

Antineutrino Detector (AD) Design

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels			
	Liquid	Mass	Function	
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target	
Outer acrylic	Liquid scintillator	20 t	Gamma catcher	
Stainless steel	Mineral oil	40 t	Radiation shielding	

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Antineutrino (IBD) Selection

Use IBD prompt+delayed coincidence signal

200 µs after delayed neutron

All Singles After Flasher Cut

Reconstructed Energy [MeV]

Delayed Reconstructed Energy [MeV]

10 12 14 16

After Muon Veto

	Detector			
	Efficiency	Correlated	Uncorrelated	
Target Protons		0.47%	0.03%	
Flasher cut	99.98%	0.01%	0.01%	
Delayed energy cut	90.9%	0.6%	0.12%	
Prompt energy cut	99.88%	0.10%	0.01%	
Multiplicity cut		0.02%	<0.01%	
Capture time cut	98.6%	0.12%	0.01%	
Gd capture ratio	83.8%	0.8%	<0.1%	
Spill-in	105.0%	1.5%	0.02%	
Livetime	100.0%	0.002%	<0.01%	
Combined	78.8%	1.9%	0.2%	

Correlated	1	Uncorrela	ted
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%
Combined	3%	Combined	0.8%

	Detector			
	Efficiency	Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy cut Prompt energy cut Multiplicity cut Capture time cut Gd capture ratio Spill-in Livetime Combined	99.98% 90.9% 99.88% 98.6% 83.8% 105.0% 100.0% 78.8%	0.47% 0.01% 0.6% 0.10% 0.02% 0.8% 1.5% 0.002%	$\begin{array}{c} 0.03\% \\ 0.01\% \\ 0.12\% \\ 0.01\% \\ < 0.01\% \\ < 0.01\% \\ < 0.1\% \\ < 0.1\% \\ < 0.02\% \\ < 0.01\% \\ 0.02\% \\ < 0.01\% \\ \end{array}$	 Only uncorrelated uncertainties relevant to near/far oscillation analysis

Reactor

Correlated	ł	Uncorrela	ted
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%
Combined	3%	Combined	0.8%

	Detector			
	Efficiency	Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy cut Prompt energy cut Multiplicity cut Capture time cut Gd capture ratio Spill-in Livetime	99.98% 90.9% 99.88% 98.6% 83.8% 105.0% 100.0%	$\begin{array}{c} 0.47\% \\ 0.01\% \\ 0.6\% \\ 0.10\% \\ 0.02\% \\ 0.12\% \\ 0.8\% \\ 1.5\% \\ 0.002\% \end{array}$	$\begin{array}{c} 0.03\%\\ 0.01\%\\ 0.12\%\\ 0.01\%\\ <0.01\%\\ <0.01\%\\ <0.1\%\\ 0.02\%\\ <0.01\%\\ <0.01\%\\ \end{array}$	 Only uncorrelated uncertainties relevant to near/far oscillation analysis Largest systematics smaller than far site statistics (~ 1%)
Combined	78.8%	1.9%	0.2%	

Reactor

Correlated	ł	Uncorrelat	ted
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%
Combined	3%	Combined	0.8%

	Detector			
	Efficiency	Correlated	Uncorrelated	
Target Protons Flasher cut Delayed energy cut Prompt energy cut Multiplicity cut Capture time cut Gd capture ratio Spill-in Livetime	99.98% 90.9% 99.88% 98.6% 83.8% 105.0% 100.0%	$\begin{array}{c} 0.47\% \\ 0.01\% \\ 0.6\% \\ 0.10\% \\ 0.02\% \\ 0.12\% \\ 0.8\% \\ 1.5\% \\ 0.002\% \end{array}$	$\begin{array}{c} 0.03\%\\ 0.01\%\\ 0.12\%\\ 0.01\%\\ < 0.01\%\\ < 0.01\%\\ < 0.1\%\\ 0.02\%\\ < 0.01\%\\ \end{array}$	 Only uncorrelated uncertainties relevant to near/far oscillation analysis Largest systematics smaller than far site statistics (~ 1%)
Combined	78.8%	1.9%	0.2%	

Correlated		Uncorrelated		
Energy/fission IBD/fission	0.2% 3%	Power Fission fraction Spent fuel	0.5% 0.6% 0.3%	Impact of uncorrelated reactor systematics reduced by relative measurement
Combined	3%	Combined	0.8%	

Reactor Flux Models

Flux model has negligible impact on oscillation measurement

Flux from each reactor used to predict IBDs at each detector

1 New model:

- P. Huber, Phys. Rev. C84, 024617 (2011),
- T. Mueller et al., Phys. Rev. C83, 054615 (2011)

2 Old model:

- A. A. Hahn et al., Phys Rev Lett. B218, 365 (1989)
- P. Vogel et al. Phys. Rev. C24, 1543 (1981)
- K. Schreckenbach et al., Phys. Lett. B160, 325 (1985)

Construct Energy Response Model from Calibration Data

3 Basic Approaches

1 Method 1

- No constraints on scintillation model from bench data
- Any combination of parameterizations for scintillator and electronics
- All parameters determined by simultaneous fit to ¹²B and gamma data
- Cross-check with remaining 3 continuous $\beta + \gamma$ spectra

2 Method 2

- Semi-empirical model based on Birks' law quenching for scintillation response
- Birks constant and Cherenkov contribution constrained by bench measurements
- Electronics response from quadratic fit to gamma data
- Cross-check with all 4 continuous β + γ spectra

3 Method 3

- Semi-empirical model for scintillation response
- Birks constant constrained by bench measurements
- Cherenkov contribution and electronics from exponential fit to all 4 $\beta + \gamma$ spectra
- Cross-check with gamma data

Comparison of best fit models

- 12 models based on 3 basic methods with different weighting of input data
- All models in good agreement with AD calibration data
- \blacksquare Resulting positron non-linearity curves consistent within $\sim 1.5\%$ uncertainty

Three Neutrino Oscillation: PMNS Matrix

 θ_{13} only recently well established by Daya Bay

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \theta_{23} \sim 45^{\circ} \text{ established through atmosperic+accelerator experiments: possibly maximal}$$

$$= \theta_{12} \sim 34^{\circ} \text{ established through solar experiments and KamLAND: large but not maximal}$$

The Daya Bay Strategy

Relative measurement with 8 functionally identical detectors

Absolute reactor flux single largest uncertainty in previous measurements Cancels in near/far ratio: $\frac{N_{f}}{N_{n}} = \left(\frac{N_{p,f}}{N_{p,n}}\right) \left(\frac{L_{n}}{L_{f}}\right)^{2} \left(\frac{\epsilon_{f}}{\epsilon_{n}}\right) \left(\frac{P_{sur}(E, L_{f})}{P_{sur}(E, L_{n})}\right)$

Baseline optimization

 Detector locations optimized to known parameter space of |Δm²_{ee}|

Far site maximizes term dependent on sin² 2θ₁₃

Go strong, big and deep!

	Reactor [GWth]	Target [t]	Depth [m.w.e]
Double Chooz	8.6	16 (2×8)	300, 120 (far, near)
RENO	16.5	32 (2×16)	450, 120
Daya Bay	17.4	160 (8×20)	860, 250
	Lots of s	ignal	Little background

Daya Bay: A Powerful Neutrino Source at an Ideal Location

Entrance to Daya Bay experiment tunnels

Among the top 5 most powerful reactor complexes in the world, 6 cores produce 17.4 GW_{th} power, 35×10^{20} neutrinos per second