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IDS-NF Goals 

!   Provide 1021 muon 
decays per year 
toward a far detector 

!   Decays from 10 GeV 
muon beam 

!   Angular divergence 
below  

!   Beam directed 
toward detector 2000 
km away 

γ
×  
10.1

NuFact'13, Beijing, August 20, 2013  
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IDS-NF Accelerator Systems 

!   A proton source 
producing a high-
power multi-GeV 
bunched proton 
beam 

!   A pion production 
target that operates 
within a high-field 
solenoid. The 
solenoid confines 
the pions radially, 
guiding them into a 
decay channel 

NuFact'13, Beijing, August 20, 2013  
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IDS-NF Accelerator Systems 

!   A system of rf 
cavities that capture 
the muons 
longitudinally into a 
bunch train, and then 
applies a time-
dependent 
acceleration that 
increases the energy 
of the slower  
bunches and 
decreases the 
energy of the faster 
bunches – all 
bunches ended up at 
the same energy 

NuFact'13, Beijing, August 20, 2013  
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IDS-NF Accelerator Systems 
!   A cooling channel that 

uses ionization 
cooling to reduce the 
transverse phase 
space occupied by 
the beam, so that it 
fits within the 
acceptance of the first 
acceleration stage 

!    An acceleration 
complex (Linac + 2× 
RLA) that accelerates 
the muons to 10 GeV  

!    A 10 GeV ‘racetrack’ 
storage ring with long 
straight sections 

NuFact'13, Beijing, August 20, 2013  
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Proton Driver 

NuFact'13, Beijing, August 20, 2013  
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Proton Driver 

!   Challenges: 

!   High power; short  
proton bunches at ~10 GeV 

!   IDS-NF approach: 

!   Consider two ‘generic’ options: 

! Linacs:  
Possible development option for HP-SPL at 5 GeV (CERN) or Project X  at 3 GeV 

(FNAL) 
Requires accumulator & compressor rings 

!  Rings: 
Development option for J-PARC or ISIS at RAL or possible ‘green-field’ option 
Requires accumulator & compressor rings 

Garoby,	
  Gollwitzer,	
  Pasternak,	
  Thomason	
  

NuFact'13, Beijing, August 20, 2013  
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Proton driver option at RAL 
 

Common Proton Driver for the Neutron Source 
and the Neutrino Factory 

•  Based on MW ISIS upgrade  
  with 800 MeV Linac and 3.2  
  (≈ 3.3) GeV RCS 
 
•  Assumes a sharing of the beam  
  power at 3.2 GeV between the  
  two facilities 

•  Both facilities can have the  
  same ion source, RFQ, chopper,  
  linac, H− injection, accumulation  
  and acceleration to 3.2 GeV 

•  Requires additional 
  RCS machine in  
  order to meet 
  the power 
  and energy  
  needs of the 
  Neutrino Factory 

•  Options for the bunch compression to 1 – 3 ns RMS bunch length: 
    - adiabatic compression in the RCS 
    - ‘fast phase rotation’ in the RCS 
    - ‘fast phase rotation’ in a dedicated compressor ring 

NuFact'13, Beijing, August 20, 2013  
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SPL- Based NF Proton Driver at CERN 

•  Beam acceleration in HP-SPL 

•  Accumulation of beam from the High Power SPL in a fixed energy 
Accumulator (5 GeV, 4MW beam power). 

•  Bunch compression  (rotation) in a separate Compressor ring 

NuFact'13, Beijing, August 20, 2013  
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Proton Driver at FNAL: Project X  

Stage 4:  
Accumulator+ 
Compressor 

Linac Schematic 

Project-X Layout 
NuFact'13, Beijing, August 20, 2013  



Operated by JSA for the U.S. Department of Energy 

 Thomas Jefferson National Accelerator Facility 
11 Alex Bogacz 

Target & Front-End 

NuFact'13, Beijing, August 20, 2013  
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Target & Capture section 

!   An intense 8 GeV, 4 MW proton beam impacts a mercury jet 
immersed in a 20 T solenoid 

!   Create a flux of pions that decay into muons 

!   20 T fields of the target tapers to 1.5 T within 15 m 

H. Kirk 

NuFact'13, Beijing, August 20, 2013  
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Target inside Capture Solenoid 
Desired Performance ≈ 1014 µ/s from ≈ 1015 p/s (≈ 4 MW proton beam) 

IDS-NF Target Concept: 

Shielding of the superconducting magnets from radiation is a major issue. 
Magnet stored energy ~ 3 GJ! 

Superconducting magnets 

Resistive magnets 

Proton beam and 
Mercury jet 

Be window 

Tungsten beads,  
He gas cooled 
 

Mercury collection pool 
With splash mitigator 

Low-energy π’s collected 
from side of long, thin 
cylindrical target. 

 
Solenoid coils can be 

some distance from 
proton beam.  

⇒  ≥ 10-year life against 
radiation damage at 4 
MW. 

Liquid mercury jet target 
replaced every pulse. 

 
Proton beam readily tilted 

with respect to 
magnetic axis. 

 
⇒ Beam dump (mercury 

pool) out of the way 
of secondary π's and 
µ's. K. McDonald 

NuFact'13, Beijing, August 20, 2013  
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Front-End (FE) channel 

•  Dual Purpose of FE:  
•  Capture the muon beam generated at the target  
•  Reduce its phase space to meet the acceptance criteria of 

downstream accelerators  

Phase-space manipulation at the FE 

NuFact'13, Beijing, August 20, 2013  
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Major Front-End subsystems  

After 
Buncher 

Target 
 

After 
Cooler 

!   Bonus : Front-End captures both µ+ and µ-  

D. Neuffer 

NuFact'13, Beijing, August 20, 2013  
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Buncher & Rotator parameters 

!   Buncher (33 m long) 

!   33 rf cavities 

!   319.6 to 233.6 MHz (13 freq.) 

!   RF voltage: 3.4 to 9.0 MV/m 

!   1.5 T magnetic field 

!   Rotator (42 m long) 

!   56 rf cavities 

!   230.2 to 202.3 MV/m (15 freq.) 

!   RF voltage: 13 MV/m 

!   1.5 T magnetic field 

D. Stratakis 

NuFact'13, Beijing, August 20, 2013  
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Cooler - Ionization cooling channel 

!   Energy loss in absorbers 

!   rf cavities to compensate for lost longitudinal energy 

!   Magnetic field focusing to confine muon beams 

!   Leads to a compression of the 4D phase space 

D. Stratakis 

NuFact'13, Beijing, August 20, 2013  
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Cooler parameters   

!   Cooler (~100 m long) 

!   0.75 m cell length 

!   201.25 MHz  

!   RF voltage: 16 MV/m 

!   2.8 T peak field on axis 

!   2.7 T field on the iris 

!   Lithium Hydride absorber 

!   4D cooling only 

D. Stratakis 

NuFact'13, Beijing, August 20, 2013  
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Lattice performance 

cooler cooler 

D. Stratakis 

NuFact'13, Beijing, August 20, 2013  
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Engineering constraints 

!   IDS-NF Engineering studies: 

!   Increase gap between coils in Buncher & Rotator  

!   Increase cell length of cooler from 75 cm to 86 cm 

!   Add one empty lattice cell (without a cavity)  after a series of cavities 

D. Stratakis 

NuFact'13, Beijing, August 20, 2013  
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Engineering constraints 

!   To properly fit the cavity input coupler, one had to reduce the axial length of the 
coils in the buncher & phase-rotator sections. 

!   For the same reason the cooler cell length was increased by 11 cm. 

!   A sequence of lattice cells is followed by an empty cell, so that a group of cavities 
and coils can be removed without disassembling the entire beam-line 

NuFact'13, Beijing, August 20, 2013  
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Lattice feasibility studies 

!   Results sensitive to the location of “empty cell” 

!   Every 7-th cell is the optimum but there is a 5% loss 

 
D. Stratakis et al., Proc. of IPAC 2013, TUPFI087 

NuFact'13, Beijing, August 20, 2013  
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Magnetic field constraints 

!   Machine performance sensitive to 
rf gradient limitations 

!   Alternative cooling lattice options: 

!   Magnetic insulation 

!   Bucked-Coil Lattice 

!   Shielded Coli Lattice 

!   High pressure rf cavities 

 

NuFact'13, Beijing, August 20, 2013  
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Radial Bucked-Coil lattice (RBC) 

Alekou & Pasternak, JINST 7, P08017 
(2012) 

NuFact'13, Beijing, August 20, 2013  
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Shielded Coil Lattice (SHLD) 

C. T. Rogers, AIP Conf. Proc.1222, 298 (2010) 

•  Increase cell length to remove RF from 
fringe fields 
•  Further shielding with iron 
•  Fields below <0.5 T in rf 

NuFact'13, Beijing, August 20, 2013  
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Lattice performance 

•  Bucked Coils lattices are pending matching optimization. 

 
NuFact'13, Beijing, August 20, 2013  



Operated by JSA for the U.S. Department of Energy 

 Thomas Jefferson National Accelerator Facility 
27 Alex Bogacz 

Muon capture optimization 
•  Reduce peak field at target from 20 T to 15 T 

•  Results sensitive to taper length 

 

H. Sayed et al., Proc. of IPAC 2013, TUPFI075 

NuFact'13, Beijing, August 20, 2013  
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Target taper studies 

•  Enhanced performance for taper lengths between 5 to 7 m 

•  There is a ~5% decrease when peak field is decreased from 20 T to 15 T.  

 

Baseline 

Optimum 

H. Sayed et al., Proc. of IPAC 2013, TUPFI075 

NuFact'13, Beijing, August 20, 2013  
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Phase space distributions (short vs long taper) 

Short Taper 4 m Long Taper 40 m 

T-Pz phase space at end of decay channel 

29	



Long Solenoid taper:  
Ø  More particles 
Ø  More dispersed (misses the buncher acceptance 

windows)  

Short Solenoid taper:  
Ø  Higher density t-pz distribution 
Ø  Fits more particles within the 

acceptance of buncher/rotator  H. Sayed  

NuFact'13, Beijing, August 20, 2013  



Operated by JSA for the U.S. Department of Energy 

 Thomas Jefferson National Accelerator Facility 
30 Alex Bogacz 

Realistic coil design for new taper 
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R. J. Weggel et al., Proc. of IPAC 2013, TUPFI073 

NuFact'13, Beijing, August 20, 2013  
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Chicane integration in the Front-End 

•  The goal of the chicane is to remove high energy 
protons (p > 500 MeV/c) 

•  The remaining proton are removed by a 10 cm Be 
absorber 

•  Adequate for both signs of muons 

•  Central coils take a serious hit from high-energy 
particles going straight through. 

  

 
C. T. Rogers et al., Proc. of IPAC 2012, MOPPC041 

NuFact'13, Beijing, August 20, 2013  
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Front-End performance with the chicane 

•  System efficiently removes unwanted particles 

•  10% muon losses compared to baseline (no chicane) 

  

 

Protons 

NuFact'13, Beijing, August 20, 2013  
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A chicane in the Decay Channel could mitigate the 500-kW power in scattered protons 
which otherwise would impact on the Buncher/Phase Rotator (C. Rogers). 

MARS15 simulations shows 10-cm-thick sleeve of pure W helps, but the “hot spot” is still a factor of 50 too “hot.” 

MARS input geometry derived from a G4Beamline model. 

No shielding 
10-cm W sleeve 

P. Snopok et al, Proc. IPAC 2013, TUPFI067 

Chicane energy deposition & shielding 

NuFact'13, Beijing, August 20, 2013  
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Front-End Summary 

!   Key challenges 
!   Engineering constraints 

!   Magnetic field constraints 

!   Chicane Integration 

!  A chicane/ absorber system to remove unwanted particles from 
the FE has been simulated. Energy deposition requires further 
shielding studies. 

!   Energy deposition and shielding 

!   Optimization of the solenoid taper 

!  A shorter taper scheme enhances performance. 

!   Global optimization algorithms underway…So far very 
promising results 

NuFact'13, Beijing, August 20, 2013  
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Acceleration 
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Acceleration complex 

RLA  I 

RLA  II 

Pre-linac 

244 MeV 0.775 GeV 

0.775 GeV 

2.8 GeV 10 GeV 

75 m 
450 MeV/pass 

219 m 
1.6 GeV/pass 

192 m 

2.8 GeV 

NuFact'13, Beijing, August 20, 2013  
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775 MeV 

Acceleration complex – ‘in plane’layout 

NuFact'13, Beijing, August 20, 2013  
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Initial Acceptance   
Initial phase-space after the cooling channel at 220 MeV/c  

IDS εrms A = (2.5)2 ε 

normalized emittance: εx/εy  mm⋅rad  4.8 30 
longitudinal emittance: εl   

(εl   = σΔp σz/mµc) 

     momentum spread: σΔp/p  

     bunch length: σz 

mm  
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Linac (244 – 775 MeV)  
15 MV/m,    r = 23 cm 

4.5 MV/m 
3.7 MV/m 

5.6 MV/m 

192 0 
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244 – 0.775 MeV Linac – Transmission  

Total loss: 7.4%  
Muon decay: 7%  

Dynamic Loss: 0.5%   
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244 MeV 

2.8 GeV 
75 m 

450 MeV/pass 

775 MeV 

Linac and RLA I – ‘in plane‘ layout 

NuFact'13, Beijing, August 20, 2013  



Operated by JSA for the U.S. Department of Energy 

 Thomas Jefferson National Accelerator Facility 
43 Alex Bogacz 

Double Arc Chicane 

NuFact'13, Beijing, August 20, 2013  
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Double Arc Chicane - Optics 

NuFact'13, Beijing, August 20, 2013  
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2.8 GeV 
75 m 

450 MeV/pass 

775 MeV 

NuFact'13, Beijing, August 20, 2013  
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Arc 1 and Arc 3 
top view 

side view 

1.9 GeV 1. 0 GeV 

1.0 GeV 

1.9 GeV 

↑    1 m  
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Switchyard - Arc 1 and 3 

1.9 GeV 1.0 GeV 

1.0 GeV 

NuFact'13, Beijing, August 20, 2013  
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Arc 2 and Arc 4 
top view 

side view 

2.35GeV 1.45 GeV 

2.35 GeV 

1.45 GeV 
1 m    ↑ 
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Multi-pass bi-sected linac optics 

389.302 0 
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10 GeV 
219 m 

1.6  GeV/pass 

2.8 GeV 

NuFact'13, Beijing, August 20, 2013  
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RLA II – Arc optics 

227.139 0 

                          

40
 

0 

5 
-5

 

B
ET

A
_X

&
Y[

m
] 

D
IS

P_
X&

Y[
m

] 

BETA_X BETA_Y DISP_X DISP_Y 

Arc 1  3.6 GeV 
12 m cells 
2 m dipoles 

θs = 11.53  

θin = 12.46  

G[kG/cm] = 0.3 B[kG] =13.2 

10 cells in 
2 vertical steps 2 vertical steps 

θs = 11.53  

Arc 2  5.2 GeV   14 m cells  3 m dipoles  

Arc 3  6.8 GeV   16 m cells  4 m dipoles   (2×2 m dipoles) 

Arc 4  8.4 GeV   18 m cells  5 m dipoles   (2×2.5 m dipoles)  

NuFact'13, Beijing, August 20, 2013  
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Engineering layout 
Pre-LINAC: 

RLA1 LINAC: 

RLA1 ARC1: 
RLA1 ARC3: 

RLA1 ARC2: 

RLA1 ARC4: 

2.8m 

0.5m Long Quadrupoles 

N. Collomb  

NuFact'13, Beijing, August 20, 2013  
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Acceleration - Summary 

NuFact'13, Beijing, August 20, 2013  

 

!   IDS baseline (Linac + 2×RLA to 10 GeV) 
! Linac (244 - 775 MeV) Longitudinal compression 
!   RLA I (0.775 - 2.8 GeV ) Arcs and multi-pass linac Optics 
!   RLA II (2.8 - 10 GeV ) Arcs and multi-pass linac Optics 
! Linac + RLA I  -‘in plane’ layout  
!   250 Double Arc Chicane (transfer line prototype) 
!   RLA I + RLA II – ‘in plane’ layout 
!   400 Double Arc Chicane (transfer line prototype) 
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Decay Ring 

NuFact'13, Beijing, August 20, 2013  
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J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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10 GeV Decay Ring Design (no insertion) 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Ideal bunch crossing points 
J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Injection into production straight 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Conceptual layout of the injection insertion 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Injection trajectory 

J. Pasternak and D. Kelliher 
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Ring with insertion 

Circumference 1575.8 
Production efficiency 35.56% x 2 
Total tune 14.25, 14.88 
Phase slip  2.8 x 10-3 

Turns per mean lifetime 39.6 

The current design allows for a realistic injection of 3 negative and 3 positive muon bunches. 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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!   There is no need for insertions in lower part of the ring.  

!   The insertion contributes to the width of the racetrack since the arcs bend by less than 180 
degrees. The lower arc should be scaled up to match this extra width. 

!   In order to use the same magnets as upper arc, just the drift lengths are scaled up. 
However, the focusing is adjusted by a small amount to optimise the working point. 

 

Decay ring optics 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Towards the realistic kicker parameters 
No of kickers    2 

No of sub kickers    10  

PFNs per kicker sub units   3 

No of Pulse Forming Networks   30 

Thyratrons                   30 

Travelling wave system design 

B field                                                 0.06 T             

Kicker aperture   0.18 x 0.18 m 
Kicker length   5.4 m 
Rise/Fall (5-95%)   1370 ns 
Pulse duration at top   0.3 µS 
 
  
 
 
 
 
 

Parameters of kickers are now relaxed. 

J. Pasternak and D. Kelliher 

NuFact'13, Beijing, August 20, 2013  
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Summary 

NuFact'13, Beijing, August 20, 2013  
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Outlook 

NuFact'13, Beijing, August 20, 2013  
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LBNE 

To Far Detector in 
Sanford (1300km) 

Buncher/ 
Accumulator 

Rings & Target 

Linac + RLA 
SC 325MHz 
 to ~5 GeV 

5 GeV 
NF Decay Ring: 
νs to Sanford Front End+4D+6D 

RLA to 63 GeV + 
300m Higgs Factory 

νSTORM + Muon Beam 
R&D Facility 

J.P.Delahaye 69 MASS (Muon Accelerator Staging Studies) 

http://arxiv.org/abs/1308.0494 
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Baseline parameters for 325 MHz Front-End 

•  Drift [42 m, 60 m] 

•  20 T → 2 T (20 T → 1.5 T) 

•  Buncher [21 m, 33 m] 

•  490 MHz → 365 MHz (319 MHz → 233 MHz) 

•  0 → 15.0 MV/m (3.4 → 9 MV/m) 

•  Rotator [24 m, 42 m] 

•  364 MHz →326 MHz (232 MHz → 201 MHz) 

•  rf voltage: 20 MV/m (13 MV/m) 

•  Cooler [~60 m, ~100 m] 

•  325 MHz (201 MHz) @ 25 MV/m (16 MV/m) 

•  LiH absorbers 

  

 

NuFact'13, Beijing, August 20, 2013  
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Lattice performance 

•  325 MHz FE version has been simulated with ICOOL 
  

 

D. Neuffer & C. Yoshikawa, MAP-Note 4355 

Emittances Muon rate 

NuFact'13, Beijing, August 20, 2013  
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Linac and RLA to 5 GeV 

244 MeV 

5 GeV 
120 m 

850 MeV/pass 

1.2 GeV 

NuFact'13, Beijing, August 20, 2013  
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f 0 = 201MHz ,
λ0 =150 cm ,
E0
acc =17MV /m , 

E0
peak = 31.5MV /m ,

a0 = 23cm.

SRF at 325 MHz – scaling 201 MHz cavity design 

f1 = 325MHz ,
λ1 = 93cm ,

E1
acc = E0

acc λ0
λ1

= 27.5MV /m , 

E1
peak = E0

peak λ0
λ1

= 50MV /m ,

a1 = a0
λ1
λ0

=14.2cm.

Need a higher gradient from a cavity to obtain the same voltage assuming 

scaling down of the cavity aperture radius for both frequencies   

NuFact'13, Beijing, August 20, 2013  

D. Hartill 
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Linac (244 MeV - 1.2 GeV)  
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24 short cryos 18 medium cryos 15 long cryos 

15 MV/m,    r = 23 cm 

4.5 MV/m 
3.7 MV/m 

5.6 MV/m 

NuFact'13, Beijing, August 20, 2013  
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Longitudinal acceptance (325 vs 201 MHz)  
325 MHz, 25 MeV/m 

88 deg. off-crest 

rf phase [deg] 

Linac  from 244 MeV to 1.2 GeV :  

282 meter long 

1.25 GV RF installed 

dynamic losses limited to less 
than 2% 

 

Δp/p 

rf phase [deg] 

Δp/p 

Δp/p 

rf phase [deg] 

72 deg. off-crest 
Δp/p 

rf phase [deg] 

Linac  from 244 MeV to 1.2 GeV  

268 meter long 

1.15 GV RF installed 

dynamic losses limited to less 
than 1% 

201 MHz, 15 MeV/m 

NuFact'13, Beijing, August 20, 2013  
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0.244 -1.2 GeV Linac – Transmission  

Total loss: 10.5%  
Muon decay: 9%  

Dynamic Loss: 1.5%   
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τ
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0.9	
  GeV	
  (µ±)	
  

0.6	
  GeV/pass	
  	
  
3.6	
  GeV	
  	
  

Multi-pass Arc Muon RLA  

NuFact'13, Beijing, August 20, 2013  
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Conventional single-pass droplet arcs 
top view 

side view 

2.4 GeV 1.2 GeV 

1.2 GeV 

2.4 GeV 

↑    1 m  

NuFact'13, Beijing, August 20, 2013  
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JEMMRLA (Jlab Electron Model of Muon RLA) 

0.9 GeV (µ±) 

79  m 

0.6 GeV/pass linac 
based on 201 MHz SRF 

1.2 GeV 
2.4 GeV 

1.8 GeV 
3.0 GeV 

120  m  2-pass 
droplet 

120  m  2-pass 
droplet 

size reduced by 
factor of ~7.5 

(1497/201) 

energies 
reduced by 

factor of ~200 
(mµ/me) 

11  m 
16  m  16 m  

4.5 MeV (e-) 

3 MeV/pass linac based 
on 1497 MHz SRF 

6 MeV 
12 MeV 

9 MeV 
15 MeV 

B	
   1	
  .7	
  Tesla	
  

G	
   28	
  Tesla/m	
  

B	
   2.6	
  Tesla	
  

G	
   45	
  Tesla/m	
  

Droplet Arcs: 7 (1+5+1) super-periods × 24 combined function magnets 

B	
   975	
  Gauss	
  

G	
   1275	
  Gauss/cm	
  

B	
   638	
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G	
   825	
  	
  Gauss/cm	
  

Fits in 25m × 7m 
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Super-period optics for P2 / P1 = 2 
P1  (6 MeV/c) P2  (12 MeV/c) 

NuFact'13, Beijing, August 20, 2013  
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Three-coil Panofsky  quad 

NuFact'13, Beijing, August 20, 2013  
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Preliminary magnet modeling 
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TOSCA will be used for detailed studies and  
generation of field maps 

Field affected by neighboring magnets 

Ryan Roussel R. Roussel 
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Conclusions 

NuFact'13, Beijing, August 20, 2013  

 

!   Wrap-up of IDS-NF (10 GeV) 
!   RDR is being written…. 

!   Next MASS NF Scenario (5 GeV) 
!   Based on 325 MHz SRF 
!   R&D on rapid acceleration 
!   Launch a new international study? 


