OPTIMIZED CAPTURE MECHANISM FOR A MUON COLLIDER/ NEUTRINO FACTORY TARGET SYSTEM

HISHAM SAYED¹ X. Ding², H. Kirk¹, K. McDonald³ ¹ BROOKHAVEN NATIONAL LABORATORY ² University of California LA ³ Princeton University

NUFACT 2013

Muon Capture in Target & Front END

- Capture Solenoid Field Study:
 - Optimizing quantity: Muon (Pions) count transverse capture
 - Target Solenoid peak field
 - Final end field
 - Optimizing quality: Muon (Pions) longitudinal phase space (transverselongitudinal coupling) – transverse-longitudinal capture
 - Taper field profile
- ► LOW ENERGY LOW POWER "C" TARGET
- > Optimizing the time of flight of incident beam (Buncher-Rotator RF phase)
- Transverse focusing field in decay-channel-buncher-rotator
- > Match to ionization cooling channel for every end field case $1.5 \text{ T} \rightarrow 3.5 \text{ T}$
- Performance of front end as a function of proton bunch length
- Realistic Coil Design & performance optimization

MUON COLLIDER/NEUTRINO FACTORY LAYOUT

Target System Solenoid:

Baseline: Capture μ^{\pm} of energies ~ 100-400 MeV from a 4-MW proton beam (E ~ 8 GeV). Low Power: Capture μ^{\pm} of energies ~ 100-400 MeV from a 1-MW proton beam (E ~ 3 GeV).

TARGET SYSTEM CURRENT BASELINE DESIGN

- Production of 10¹⁴ µ/s from 10¹⁵ p/s (≈ 4 MW proton Tungsten beads beam)
- Proton beam readily tilted with respect to magnetic axis.
- > Hg Target
- Proton Beam
 - ≻ E=8 GeV
- Solenoid Field
 - > IDS120h \rightarrow 20 T peak field at target position (Z=-37.5)
 - > Aperture at Target R=7.5 cm End aperture R = 30 cm
 - → Fixed Field Z = 15 m → Bz=1.5 T

$$> N_{\mu+\pi+k}/N_{P}=0.3-0.4$$

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

LOW ENERGY - LOW POWER TARGET SYSTEM

- Graphite target \geq
- \wedge 1-MW proton beam power E=3 GeV
- Solenoid Field

У

- \triangleright IDS120h 20 T peak field at target position
 - LOWER peak field is being considered (20-15T)

5-T copper magnet insert; 10-T Nb3Sn coil + 5-T NbTi outsert. Desirable to eliminate the copper magnet (or replace by a 20-T HTS insert).

TAPERED TARGET SOLENOID OPTIMIZATION

LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER)

Longitudinal phase space at end of decay channel

Long Taper 40 m

Long Solenoid taper:

- > More particles
- ➤ Large time spread → large longitudinal emittance

Short Solenoid taper:

- ➤ Smaller time spread → smaller longitudinal emittance
- Fits more particles within the acceptance of buncher/rotator

Short Taper 4 m

8

8/19/13

PHASE SPACE - SHORT VERSUS LONG TAPER

Transverse emittance shaped by capture solenoid

^{ov} 0 ^{on} 1 ^{on} 1

Transverse emittance decreases by 8% with solenoid taper length going $8 \rightarrow 40$ m

Time Spread increase by 90% with solenoid taper length going $8 \rightarrow 40$ m

Time spread shaped by capture solenoid

10

MARS SIMULATIONS & TRANSMISSION

Muon count within energy cut at end of decay channel

FRONT END PERFORMANCE

PERFORMANCE DEPENDENCE ON TIME OF FLIGHT (RF PHASE)

BROOKH VIEN

FRONT END PERFORMANCE

High statistics tracking of Muons through the front end

MUON YIELD VERSUS END FIELD

Performance of FE as function of Constant solenoid filed in Decay Channel – Buncher – Rotator (matched to +/- 2.8 T ionization cooling channel)

PROTON BUNCH LENGTH

 $\sim 3\%$ loss per 1 nsec increase in bunch length

8/19/13

LOW ENERGY - LOW POWER CARBON TARGET

- Graphite target
- > 1-MW proton beam power E=3 GeV
- Solenoid Field
- ► IDS120h 20 T peak field at target position
 - LOWER peak field is being considered (20-15T)

MARS1512 simulations for production

Distribution at z=0.0

BROOKH VIEN

LOW ENERGY – LOW POWER CARBON TARGET

OPTIMIZED CAPTURE/FRONT END

NEW SHORT TARGET CAPTURE REALISTIC MAGNET (WEGGEL)

NEW SHORT TARGET CAPTURE MAGNET (WEGGEL)

Muon Target Short Taper Magnet taper length =7 m- B=20-1.5 & 2.5 T

NEW DECAY CHANNEL REALISTIC MAGNET (WEGGEL)

The pions produced in the target decay to muons in a Decay Channel (50 m) Three superconducting coils (5-m-long) $Bz(r=0) \sim 1.5$ or 2.5 T solenoid field. \succ Suppress stop bands in the momentum transmission.

Axial-field profile of two Decay-Channel modules

IDS120L20-1.5T 7m

Magnet	Length [m]	Inner R [m]	Outer R [m]	J [A/mm²]	
1	0.19	0.6	0.68	47.18	NATI
2	3.8	0.6	0.63	40.00	I ONAL
3	0.19	0.6	0.68	47.18	LAB

REALISTIC COIL BASED DECAY CHANNEL SOLENOID STOP BAND STUDY

Suppression of stop bands in the Decay Channel:

Tracking muons through decay channel 10 cells (50 m) optimize magnet design for best performance

Transmission:Constant 1.5 Solenoid Field%67IDS120L20to1.5T7m%62Modified IDS120L20to1.5T7m%66

IDS120L20to1.5T7m

IDS120L20to1.5T7m

CONCLUSION & SUMMARY

1- Target Solenoid parameters that affect the particle Capture & Transmission at target or after cooling

Initial peak Field – Taper length – End Field

2- Impact:

Short taper preserves the longitudinal phase-space \rightarrow muons can be captured efficiently in the buncher-phase rotation sections and more muons at the end of cooling.

The maximum yield requires taper length of 7-5 m for all cases (20-15T) (1.5-3.5T) for any bunch length.

3- Final constant end field increases the yield by 20% for every 1 T increase in the field beyond the 1.5 T baseline

- 4- Initial proton bunch length influence the muon/proton yield at the end of the cooling channel $\sim 3\%$ reduction per 1 nsec increase in bunch length.
- 5- 1-MW proton beam power E=3 GeV \rightarrow 0.04 Muon+/proton at end of cooling channel

6- Realistic Coil design for the capture target and decay channel.

