

Conceptual Design of the CN2PY secondary beam line & CN2PY related activities at CERN

XVth NuFact International Workshop IHEP Beijing, 19-24th August 2013

- Presentation of the LAGUNA-LBNO design study
- Overview of the activities on-going at CERN:
 - The HP-PS project
 - The conceptual secondary beam line design
 - Design of Secondary Target
 - Beam Optics Optimization
 - Muon Shielding
 - The facility layout proposition
- Summary and perspectives

The LAGUNA-LBNO design study

LAGUNA:

• Assessment of the possibility of research infrastructure to host the next generation very large, deep underground neutrino observatory

• Ended in 2011, selecting the combination of the deep underground mine at <u>Pyhäsalmi</u> and the <u>Liquid Argon Time Projection Chamber</u> technology for the detector as the best candidate

"GLACIER" design: 20-100kT LAr TPC

Candidate Sites

- Boulby, UK
- Canfránc, Spain
- Fréjus, France
- Pyhäsalmi, Finland
- SUNLAB, Poland
- Slanic, Romania
- Umbria, Italy

LAGUNA

Collaboration 100 scientists more than 20 institutes 10 European countries

The LAGUNA-LBNO design study

LAGUNA:

• Assessment of the possibility of research infrastructure to host the next generation very large, deep underground neutrino observatory

• Ended in 2011, selecting the combination of the deep underground mine at <u>Pyhäsalmi</u> and the <u>Liquid Argon Time Projection Chamber</u> technology for the detector as the best candidate

LBNO:

- GOAL: extends LAGUNA design study
- End in August 2014
- · Development of Underground Construction Plan and Costing
- Detailed engineering of detector construction and operation
- Prospects for a long baseline neutrino beam from CERN: CN2PY

The LAGUNA-LBNO oscillation physics and goals

MEANS:

- Very large LAr far detector (>20kton) at Pyhäsalmi deep underground mine
- Conventional secondary beam line + Near Detector located on CERN site
- Primary beam provided by upgraded SPS p@400GeV/750kW (phase I) and HP-PS p@50GeV/2MW (phase II)
- Opportunity to have a second long beam line coming from Protvino accelerator

GOALS:

- determine MH with $>5\sigma$ CL within two years
- reach $>5\sigma$ CL on CPV over significant part of the space phase after $\sim 10y$ of data taking

Engineering Department Activities of the WP4 at CERN

WP4 Structure:

.Study Group 1: High Intensity Beams with Present CERN Accelerators >Investigate the impact of CERN SPS accelerator upgrade up to ~750 kW

.Study Group 2: Proton Beam Transfer >Investigate the extraction of SPS beam to CN2PY >Find synergies with the CENF project (Short Base Line)

Study Group 3: CN2PY Secondary Beam Conceptual Design

.Study Group 4: CN2PY Layout Studies

>Define the general layout of the facility within CERN territory >Interface between the other study groups

.Study Group 5: HP-PS Design Study

>Feasibility study of a 50-75 GeV High Power PS

.Study Group 6: Magnetic Configuration of a LAGUNA Detector >Study possible technology and configuration, basic performance evaluation

.Study Group 7: Near Detector Requirements

>Understand the detector environment and requirements, development of a conceptual design

PRIMARY BEAM

Phase I: CNGS-type beam from upgraded SPS

- Use of existing infrastructures
- Goal: 750 kW / 7x10¹³ ppp at 400 GeV (CNGS record: 565 kW / 5.3x10¹³)
- **Current bottlenecks:** beam losses in PS (radiation issues)
- Will benefit from LIU-SPS and injector upgrades (RF upgrade and multi-turn extraction in PS)
- Beam studies resume after LSI
- Phase II: High-Power Proton Synchrotron (HP-PS)
 - Goal: 2 MW at 50/75 GeV
 - Conceptual design to be delivered in mid-2014

Courtesy of the HP-PS Study Group (F.Antoniou, A.Alekou *et al.*)

Parameter	50 Gev	75 GeV	
Circumference [m]	1174		
Symmetry	3-fold		
Beam Power [MW]	2		
Repetition Rate [Hz]	I		
RF frequency [MHz]	40		
Kinetic Energy @ inj./ext. [GeV]	4/50	4/75	
Protons/pulse [10 ¹⁴]	2.5	١.7	
Dipole ramp rate [T/S]	4.2	5.9	
Bending field @ ext. [T]	2.09	3.13	
Max. quadrupole field [T]	1.19	1.53	
Dipole gap height [mm]	93	73	
Lattice type	Resonant NMC arc , doublet LSS		
Norm. emit. H/V [mm-mrad]	15/12.3	10.6/8.3	

HP-PS design

 Study of a High-Power PS with a 2 MW proton beam for neutrinos (LAGUNA-LBNO)

50 GeV option (Baseline)

- Conventional magnet technology (magnet feasibility studies demonstrated for the PS2 design studies)
- More demanding beam dynamics due to high bunch charge

75 GeV option (Alternative)

- Demanding magnet technology (Superferric dipoles of 3.13 T field and high repetition. rate)
- Reduced bunch intensity and more relaxed beam dynamics

Courtesy of the HP-PS Study Group (F.Antoniou, A.Alekou et al.)

Ring Layout

 3-fold symmetric ring with NMC (Negative Momentum Compaction) arcs and doublet straight sections (for injection/extraction elements, RF system, collimation)

- The single-particle optics design studies are now completed
- Currently under study:
 - Collimation system optimization
 - RF design
 - Magnet design
 - Collective effects: space charge with realistic
 - beam coming after painting, instabilities, impedance budget
 - Beam instrumentation inventory

More information:

Y. Papaphilippou *et al.* Design Options of a High-power Proton Synchrotron for LAGUNA-LBNO *Proc. of IPAC2013, Shanghai*, 2013.THPWO081

Secondary beam line design

- Objective: full description of the beam line facility in FLUKA to provide
 - realistic neutrino fluxes as optimized as possible for LBNO physics goals,
 - detailed energy deposition studies to assess the need for ventilation and cooling in all part of the facility,
 - prompt and residual dose rates to assess the shielding requirement to comply with RP safety rules

Secondary beam line design

Preliminary CN2PY implementation in FLUKA

Current Status of the conceptual design

- Simple but complete description of the secondary line in FLUKA
- Target design: preliminary geometry and energy deposition study
- Achieved 1st iteration of beam optics optimization:
 - beam line parameters tuned to enhance neutrino flux at FD around both first oscillation maxima and phase I primary operation: p@400 GeV / 750 kW
 - Beam optics based on modified "NuMI style" 2-horns system
- Assessment of the neutrino beam's sensitivity to the Decay Pipe configuration
- Shielding requirements after the Beam Dump to protect ND from HE muons
- Availability of neutrino fluxes of all 4 species enables more realistic near and far detector simulations

Main parameters of the beam line

Items	Symbol	Value	unit
Target length	ltgt	1.3	[m]
Target radius	r_{tgt}	4	[mm]
Target material		graphite	
Material density	ρ_{tgt}	1.85	$[g/cm^3]$
Horn and Reflector inner shapes		NuMI (Longhin)	
Horn length	l_H	3	[m]
Horn current	I_H	220	[kA]
Reflector length	l_R	3	[m]
Reflector current	l_R	225	[kA]
Distance between target horn	Δ_{tgt}	0	[cm]
Distance horn and reflector	Δ_{HR}	8	[m]
Angular acceptance ~ 11 GeV pions (1st osc. max. ν_{μ})		≤ 60	[mrad]
Angular acceptance ~ 4 GeV pions (2nd osc. max. ν_{μ})		≤ 100	[mrad]
Distance target and decay tunnel		20	[m]
Decay tunnel length	l_{dcyp}	300	[m]
Decay tunnel diameter	d_{dcyp}	3	[m]
Hadron stopper + Passive shielding length	l _{dump}	100	[m]
Hadron stopper + Passive shielding diameter	d_{dump}	3.8	[m]
Muons flux requirement at Near detector (TOSCA TDR)		2.5	$[/m^2/10^{13}p]$
Distance between target and Near Detector	Δ_{ND}	800	[m]
Distance between end of decay tunnel and Near Detector		480	[m]

14

TARGET DESIGN – Particle Yield

- Secondary yield scales with primary beam energy
 - highest available primary energy (at given intensity) is preferred to maximize secondary yield
- "Target located outside of horn" design limits the angular acceptance of the focusing system to ~0.1 rad
 - Preferred solution for the point of view of engineering
 - ▶ ~40% loss of secondaries generating 2nd max. neutrinos
 - Specific "target inside horn" scenario will also be studied

TARGET DESIGN – Secondary kinematics

Phase I Versus Phase II

Normalized energy and angular distributions

TARGET DESIGN – Secondary kinematics

Phase I Versus Phase II

- Significant differences in longitudinal position of secondaries
- Will have impact on the focalization located downstream
- Final optimization of the beam optics will include that effect

- Preliminary design:
 - Be or C solid target
 - ~I.3 meter long
 - No segmentation
 - 4-6 mm radius ($I\sigma = I I.6$ mm)
- Expected radiation damage:
 - phase I: 750kW / 1.5e20 pot/y
 0.2-0.5 DPA/y
 - phase II: 2MW / 2.5e21 pot/y
 ~5 DPA/y
- More refined optimization during engineering-driven design studies

TARGET DESIGN – Geometry

Target outside horn:

- CNGS-like configuration
- Radiation-cooled target
- Ok for 750 kW more complex for 2MW operation

Target inside horn:

- Forced-convection He cooling
- Ok for 750 kW extendable to 2 MW without major problems

High temperature graphite

- ▶ 600-1000 °C
- Annealing and reduction of imperfection

TARGET DESIGN – Engineering considerations

BEAM OPTICS - Current Status of Optimization

- Optimized relative positions and circulating currents of NuMI's style horns proposed in previous studies
- > Guideline: Maximization of the v_{μ} flux at Far Detector around the 2 first maxima

Ph.Velten

BEAM OPTICS - Neutrino flux at FD

- Three proposed "optimized" configurations
 - Phase I (400GeV) only
 - "target inside horn scenario" not favored with current horn shapes
 - "Perfect focusing" suggests a possible significant improvement at low energy

configuration	z_{tat} (cm)	I_H (kA)	Δ_{HR} (m)	I_R (kA)	Φ^{1st}_{ν}	Φ^{2nd}_{ν}
"target outside horn"	0	220	8	225	11.8 (100%)	1.65~(100%)
"target inside horn" A	+50	175	6	175	7.2~(61%)	1.97~(119%)
"target inside horn" B	+50	175	8	300	10.9~(92%)	1.52~(92%)

LAG

CÉRN

Ph.Velten

BEAM OPTICS – Angular Acceptance

 Acceptance currently limited by the double elliptical horn shapes

 Fully enclosing the target in a "collector" horn is the only solution

Momentum angle of pions before focalization which generated neutrinos at the FD

BEAM OPTICS - Next step of optimization

- New methodology to scan a larger fraction of the beam optics parameters
 - Investigate new horn shapes
 - Assess the need to have dedicated set of parameters for phase 1 and phase 2
- Use CPV sensitivity to estimate a realistic efficiency of each focusing configuration
 - Assess the importance of the 2nd maxima versus the 1st one.

CPV sensitivity generated by "LBNO tuned" GLoBeS (thanks to S. Di Luise, ETH Zurich and V. Galymov, CEA Saclay):

CN2PY + 20kt LAr FD 7.5y NuMu mode + 2.5y ANuMu mode

MUON SHIELD

- Muons reaching the ND causes pile-up for event reconstruction
 - Guidelines from TOSCA TDR: $< 2.5 \mu/m^2/10^{13}p$
 - ND located 800 m after the target
 - MC study to optimize the passive shield geometry

- Similar to WANF shielding for SPS p@400 GeV
- "Purely active shielding has been investigated as an alternative solution

Layout of the future facility

Hard slope to Finland

Main challenges:

2 stages for primary beam operation:

-The facility layout is driven by the 400 GeV beam

- The target cavern and decay pipe layout (shielding) is driven by the 50(70) GeV beam and the 2MW of power Location on CERN site and plugging scenario to SPS

Objective of the studies:

- Attempt to foresee and solve most of the issues
- Optimize safety, long-term maintenance and cost
- Coordinate civil engineering, accelerator groups, physics requirement

Layout of the future facility

Implementation of the 1st layout proposition in FLUKA

- Centralization of the physics studies and the engineering studies
- Prompt & residual dose calculations in all parts of the facility
- Short-term results: First assessment of the shielding requirements and activation levels

Summary and future activities

- Main parameters of the secondary beam line have been defined
 - Used currently by the LAGUNA-LBNO collaboration for both detector simulations and facility layout study at CERN
- 2nd iteration of neutrino beam optimization is currently under way
 - New procedure based on CPV sensitivity plot
 - Investigate "large acceptance" horn for low-energy secondary focalization
 - Precise assessment of the difference between phase I & phase II on the beam line design
- Perform detailed energy deposition studies in a realistic layout description of the facility
 - First assessment of shielding requirement for RP
 - Initiate "engineering driven" MC studies.

Acknowledgements

For the secondary beam line design:

M. Calviani, A. Ferrari, Ph.Velten (CERN EN/STI) I. Efthymiopoulos (CERN EN/MEF) M. Zito, V. Galymov (CEA-Saclay), A. Rubbia, S. Murphy, S. Di Luise (ETHZ-Zurich)

For the facility layout studies:

B.Goddard (CERN TE/ABT), M.Calviani (CERN EN/STI), J.Osborne (CERN GS/SE),
K.Kershaw (CERN EN/HE),
M. Smargianaki, C.Lazaridis, Y. Papaphilippou (CERN EN/MEF),
H.Vincke, C.Strabel (CERN DGS/RP)

For the HP-PS project:

A.Alekou, J.Alabau-Gonzalvo, F.Antoniou (CERN BE/ABP)
I. Efthymiopoulos, C. Lazaridis (CERN EN/MEF),
R. Garoby (CERN BE/HDO), F. Gerigk (CERN BE/RF),
B. Goddard, Y. Papaphilippou, A. Parfenova, E. Shaposhnikova (CERN TE/ABT),
M. Benedikt, R. Steerenberg (CERN BE/OP)

BACKUP SLIDES

Ph.Velten

40

35

30

25

(wo) A 15

10

5

0

-5

-200

Neutrino Parents – Energy Distributions

31

Neutrino Parents – Decay Kinematics

Ph.Velten

CERN

Count rates at Detectors

Ph.Velten

32

BEAM OPTICS - Neutrino flux at FD

Phase I Versus Phase II

FD neutrino flux using the phase I optimized beam line

33

Ph.Velten

BEAM OPTICS OPTIMIZATION - Investigating new horn shapes

Existing large acceptance horns

$MiniBoone \quad (< E_v > = 1 GeV)$

LBNE horn study

LAgyna

T2K (< E_v >=1.5 GeV on-axis)

BEAM OPTICS OPTIMIZATION - Investigating new horn shapes

- Huge number of degrees of freedom
- New methodology under investigation to scan efficiently all the interesting configurations (genetic algorithm)

DECAY PIPE

Variation of the integrated NuMu fluxes with respect to different Decay Pipe configurations

70000

80000

EN Engineering Department

the required bending power

800

600

400

200

-200

-400

-600

-800

30000

40000

50000

60000

z (cm)

y(cm) 0

5

1e+08

1e+06

10000

100

0.01

0.0001

1e-06

90000

/cm2 per 10¹³ p

MUON SHIELD

-5

MUON SHIELD

Active configuration to match passive shield efficiency : {l=14m, r=3.6m, s=1.5m}

	passive	active
total area density	161 kg/cm^2	126 kg/cm 2
shield length	100 m	28 m
shield diameter	3.8 m	$7.2 \mathrm{~m}$
shield volume	$1134 {\rm m}^3$	$1140 {\rm m}^3$
shield mass	$8165~{\rm t}$	8208 t

Active shielding scenario dismissed for now

- Neutrinos at E_v>10 GeV are background for both detectors
 - Attempt to suppress the HE part of the secondary beam with a Graphite Plug placed downstream the target

 Computed the neutrino flux at both detectors for various plug configuration {l_{Pg}, r_{Pg}, z_{Pg}}

- Results of the plug study for p@400 GeV
 - Fixed length I_{Pg}=1 m

A LAgyna

40

CÉRN

Ph.Velten

- Results of the plug study for p@400 GeV
- Selected configurations:
 - $\{z_{Pg}=Im, r_{Pg}=2cm\}$: plug located inside the Ist horn
 - $z_{Pg} = 7.5 \text{m}, \tilde{r}_{Pg} = 4 \text{cm}$: plug located between the horns (easier to build ?)
- Efficiencies:
 - ▶ 50% reduction in $\Phi(E_v > 10 \text{GeV})$ at both ND and FD
 - 15% (config1) and 24% (config2) reduction for Φ^{1st} , <5% for Φ^{2nd}

Is it worth it?

- Plug will intercept secondaries + uncollided primary beam
- Energy deposition such as to require water cooling
- Other geometries could be investigated (annular design, etc.)

- Results of the plug study for p@400 GeV
 - Graphite Plug Neutrino spectrum at NEAR DETECTOR

Ph.Velten

- Results of the plug study for p@400 GeV
 - Graphite Plug Neutrino spectrum at FAR DETECTOR

Similar studies for p@50 GeV under progress

Ph.Velten