

NeutrinoFactoryR&DEfforts

Daniel M. Kaplan

NuFact 2013 IHEP Beijing 20 August 2013

Outline

- Overview
- Required R&D and
- R&D Status
- Conclusion

Neutrino Factory

- The most powerful facility proposed for V osc. & CPV
- Two designs currently under development:
- International Design Study for the Neutrino Factory (IDS-NF)
 - generic

 $E_{\mu} = 10 \text{ GeV}, \\ L = 2,000 \text{ km}$ chosen as optimal for CPV given $\operatorname{cir}^{2} 20 = 0.1$ $\sin^2 2\theta_{13} \approx 0.1$

• U.S. Muon Accelerator Program (MAP) design

 \implies L = 1,300 km

 \implies $E_{\mu} = 5 \text{ GeV}$ is optimal D. M. Kaplan, IIT

Neutrino Factory

- Note CPV optimum vs. distance is broad
 - \implies for fixed L/E, no particular advantage to L = 2,500 vs 1,300 km,
 - provided detector efficient at the resulting lower neutrino energies
 - which, e.g., (magnetized) LAr or totally active scintillator detector would certainly be
 - and magnetized iron might be good enough

Neutrino Factory R&D Topics

- I. Neutrino Factory conceptual design
- 2. Multi-MW Proton Driver
- 3. Multi-MW target facility
- 4. Muon capture, bunching, & cooling
- 5. Muon acceleration
- 6. Muon decay ring
- 7. Detectors

I. Conceptual Design

- Developed in series of studies, starting with:
 - Prospective Study of Muon Storage Rings at CERN [B.Autin, A. Blondel, and J. Ellis, eds., CERN 99-02, ECFA 99-197 (1999)]
 - (U.S.) Feasibility Study of a Neutrino Source Based on a Muon
 Storage Ring
 [N. Holtkamp and D. Finley, eds., Fermilab-Pub-00/108-E (2000)]
 - (U.S.) Feasibility Study-II of a Muon-Based Neutrino Source [S. Ozaki, R. Palmer, M. Zisman, J. Gallardo, eds., BNL-52623 (2001)]
 - A Feasibility Study of a Neutrino Factory in Japan [NufactJ Working Group, Y. Kuno, and Y. Mori, eds., May 24, 2001, KEK Report (2003)]
- Current (nearly complete):
 - International Design Study for the Neutrino Factory (IDS-NF)
 - Reference Design Report in preparation
- Snowmass White Paper: "Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the US" [arXiv1308.0494]

2. Proton Driver

- Goals*: $P = 4 \text{ MW} @ E \approx 3-8 \text{ GeV}$ with \leq few-ns bunch width & 50 Hz repetition rate
 - can ease space-charge issues using groups of ≈ 3 bunches with $\approx 100 \ \mu s$ spacing [see Target discussion]

• Approaches:

- linac with accumulator & compressor rings
- synchrotron
- FFAG

3-8 GeV

Pulsed Linac

1-3 GeV

CW Linac

0-1 GeV CW Linac

High Power allation Campus

Pulsed ECR

Linac 100 MeV

Linac to 0.8 G 2.8-1

High Power

Stage 2

Existing Beamline Enclosure

1-3 GeV

Stage 3 3-8 GeV

Muon & Kaon Campus

Proposals:

Accumulator

Proton Driver

- **HP-SPL at CERN**
 - 4 MW 5 GeV superconducting linac
- ISIS upgrade at RAL
 - 5 MW 3.2 GeV RCS driven by 800 MeV linac
- **Project X at FNAL** (only "active" proposal)
 - Stage II: I MW 3 GeV CW linac → "NuMAX"
 - later upgrade to 3 MW \rightarrow "NuMAX+" (+ cooling)
 - Stage IV: 4 MW 8 GeV pulsed linac see M. Palmer, Delahaye plenary talks sterile V + cross sections → Muon Collider see nuSTORM WG3 session
 - "Stage 0": nuSTORM ring using existing FNAL complex

NF R&D | NuFact'13

3. Target Facility

- Ist stage: conventional I MW target (e.g., graphite)
- Next stage:
 - multi-MW beam likely to melt almost any solid target!
 - so why not use liquid? e.g. Hg or Pb-Bi eutectic
 - ∘ high-A ⇒ makes ≈ equal #s of μ^+ and μ^-
 - o can remove radioactive spallation products by distillation
 - container risky (erosion, shock) \Rightarrow use free jet
- Proof of principle: MERcury Intense Target (MERIT) Experiment @ CERN

MERIT cutaway view:

Hg pump

MERIT

BNL E-951 (2001) • Experiment car CERN nTOF fai

 BNL/CERN/OR Princeton/RAL/ collaboration

- Hg jet, I cm diam, 20 m/s, jet axis at 33 mrad to magnet axis ($B \le 15$ T)
- concept demonstrated workable up to $\approx 8 \text{ MW}$ - pulses up to 3 × [K. McDonald *et al.*, Proc. IPAC'10]

Before

400

During

TCNI

.5 µs

600

After

tensity loss

ew-100 µs

800

1000

2

Total

ptixan tength (m)

- 20 T hybrid (or HTS?) solenoid at target for efficient pion capture
- Requires massive shielding installation & robotic maintenance & handling capability
- But no obvious showstopper
- Design now being evaluated for 3 GeV p beam

see McDonald, Sayed WG3 talks

- IDS-NF design evolution
 - add chicane to control losses

NF R&D

- ionization cooling gains
 x 2.5 in good muons
- NF cooling requires (normal-conducting) RF gradient in few-tesla field

Decay Channel	Buncher	Phase Rotator	4D Cooler	

Muon Cooling R&D

 $\frac{dE}{dx}$

 $\frac{dE}{dx}$

r.f.

 $E \rightarrow E - \left\langle \frac{dE}{dx} \right\rangle \Delta s$ $\theta \rightarrow \theta + \theta_{space}^{rms}$

r.f.

- RF cavities between absorbers replace ΔE

 $\frac{dE}{dx}$

- Absorbers:

r.f.

r.f.

- Muons quickly cool via ionization
- Low-Z absorber material is best

• Want low β to minimize heating via MCS \Rightarrow RF in magnetic field

www.iit.ed

lE/dx (MeV g⁻¹cm²)

H₂ liquid

He gas

1000

 $10\,000$

100

 $\beta \gamma = p/Mc$

1.0 10 Muon momentum (GeV/c)

ionization energy loss

multiple Coulomb scattering

Muon Cooling R&D

- RF cavity operation in B field under investigation in Fermilab MuCool Test Area (MTA)
 - not a go/no-go issue, but one of cost-effectiveness
- Muon Ionization Cooling Experiment (MICE) at RAL will demonstrate & characterize cooling

see Adey, Kaplan WG3 talks

Front End

Cooler

Δ

Buncher

hase Rotator

Decay Channel

MuCool R&

- Efficient ionization cooling requires RF cavity operation in multi-tesla magnetic field
 - technologies under test at MTA:
 - vacuum RF cavities
 - exploring coupler and materials issues
 - o high-pressure H₂-filled RF cavities
 - combine functions: breakdown suppressant ³/₂^{0.6}
 and ionization-cooling energy absorber
 - encouraging recent progress

1.01% Dry Air (0.2 % O2) in GH2 Pure GH2 0.81% Dry Air (0.2 % O2)in GH2 0.4 at B = 3T0.2 ~ 50X reduction in **RF** power dissipation 0.0 30 10 20Time $[\mu s]$ 20 Aug 2013 15/25

MuCool R&D

- Many efforts in progress:
 - vacuum RF cavities
 - evidence for coupler breakdown 0 in previous 3 T high-gradient tests
 - SLAC ACE3P multipacting calculations leading to improved coupler designs
 - Be better than Cu at high gradient? 0
 - LBNL & SLAC collaborating on modular cavity with interchangeable endwalls, featuring improved coupler design
 - fabrication in progress

20 Aug 2013

MuCool R&D

- Many efforts in progress:
 - vacuum RF cavities (cont'd)
 - "All Season" cavity
 - further tests planned at 5 T
 - o gearing up for further 201 MHz cavity tests
 - including improved coupler design
 - and full test of tuning mechanism in "single-cavity" cryostat
 - and large 3 T "Coupling Coil" magnet (under test)

MICE

- International Muon Ionization Cooling Experiment at UK's Rutherford Appleton Laboratory (RAL)
- Flexibility to test several ionization-cooling absorber materials and optics schemes

µbeam ~200 MeV/c β = 5-45 cm, LH₂, RF SciFi solenoidal spectrometers measure emittance to 1‰ (muon by muon)

4T spectrometer II

see Adey, Kaplan WG3 talks

Status: under construction, program complete by ~2020

Cooling cell ~10%

- with first results ~ 2015

4T spectrometer I

TOF

NF R&D | NuFact'13

20 Aug 2013

TOF

Calorimeters

MAP: linac plus "dogbone" RLA to 5 GeV

IDS-NF:
 2 RLAs
 to I0 GeV

see Bogacz WG3 talk

Jefferson Lab

16 m

9 MeV

15 MeV

NuFact'13

NF R&D

4.5 MeV (e-)

3 MeV/pass linac based

on 1497 MHz SRF

Fits in 25m × 7m

20 Aug 2013

 $\Delta E/2$

 $\Delta E/2$

28 Tesla m

638 Gauss

825 Gauss/cm

– vs. -

ΔE

6 MeV

12 MeV

В

G

see Bogacz WG3 talk

- Note dogbone RLA geometry has twice the ΔE per pass, easing switchyard design
- Multi-pass arcs under development:
 B 2.6 Tesla G 45 Tesla/m
 - using FFAG-like arc optics

D. M. Kaplan, IIT

o proposed JEM[®]_G RL⁹^{A5 Gauss} electron demo @ JLab:

Jefferson Lab

- Alternate to RLA: FFAG
 - EMMA demo @
 Daresbury Lab
- Not the IDS-NF baseline
 - all-RLA design technically simpler
 - but FFAG could be valuable for muon collider

- Designs assume use of low-frequency superconducting RF, due to large beam
 - 201 MHz sputtered-Nb on Cu cavity built and tested at Cornell
 - high-gradient performance marginal
- Now moving to 325 MHz
 - allows use of explosion-bonded Nb on Cu
 - or possibly electroformed Cu on Nb
 - prototype under construction

NF R&D | NuFact'13

6. Decay Ring

- I0 GeV lattice designed for IDS-NF
- Can be scaled for $E_{\mu} = 5 \text{ GeV}$

7. Detectors

Oscillated vs. non-oscillated events differ in lepton sign

 \Rightarrow detector must be magnetized

 Baseline is Magnetized-Iron Neutrino Detector (MIND) à la MINOS

"SuperBIND" proposed for nuSTORM

- using superconducting transmission line for high $I \rightarrow$ high B
- Or magnetized LAr (R&D needed)

Or Totally Active Scintillator Detector (TASD)

NF R&D | NuFact'13

Conclusions

- Neutrino Factory design has become a mature field
- MuCool and MICE will reduce risk
- BUT despite some open technical questions,

one could build a Neutrino Factory now

- with, in a staged scenario, cooling & multi-MW target as future upgrades
- In practice, need to wait for Project $X \Rightarrow 2020s$

